Mining Surgery Phase-Related Sequential Rules from Vertebroplasty Simulations Traces

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9105)

Abstract

We present in this paper an algorithm for extracting perceptual-gestural rules from heterogeneous multisource traces. The challenge that we address is two-fold: 1) represent traces such that they render coherently all aspect of this multimodal knowledge; 2) ensure that key tutoring services can be produced on top of represented traces. In the spirit of automatic knowledge acquisition paradigm proposed in the literature, we implemented PhARules, a modified version of an existing algorithm, CMRules, for mining surgery phase-aware sequential rules from simulated surgery traces. We demonstrated the efficiency of our algorithm as well its performance limits on traces of simulations of vertebroplasty recorded in TELEOS, an Intelligent Tutoring System dedicated to percutaneous orthopedic surgery.

Keywords

Intelligent tutoring systems Educational data mining Sequential rules mining Simulated surgery Percutaneous orthopedic surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielminski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: SIGMOD Conference, pp. 207–216 (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. Int. Conf. on Data Engineering, pp. 3–14 (1995)Google Scholar
  3. 3.
    Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E.: Building Intelligent Tutoring Systems for Ill-Defined Domains. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 81–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., Faghihi, U.: A Hybrid Expertise Model to Support Tutoring Services in Robotic Arm Manipulations. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS(LNAI), vol. 7094, pp. 478–489. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E.: CMRules: Mining sequential rules common to several sequences. Journal Know.-Based Syst. 25(1), 63–76 (2012)CrossRefGoogle Scholar
  6. 6.
    Jambon, F., Luengo, V.: Analyse oculométrique « on-line » avec zones d’intérêt dynamiques: application aux environnements d’apprentissage sur simulateur. In: Actes de la Conférence Ergo’IHM sur les Nouvelles Interactions, Créativité et Usages, Biarritz France (2012)Google Scholar
  7. 7.
    Luengo, V., Larcher, A., Tonetti, J.: Design and implementation of a visual and haptic simulator in a platform for a TEL system in percutaneous orthopedic surgery. In: Westwood, J.D., Vestwood, S.W. (eds.) Medecine Meets Virtual Reality 18, pp. 324–328 (2011)Google Scholar
  8. 8.
    Luengo, V., Vadcard, L., Tonetti, J., Dubois, M.: Diagnostic des connaissances et rétroaction épistémique adaptative en chirurgie. In: Revue d’Intelligence Artificielle, vol. 25(4), pp. 499–524. Lavoisier. Hermes Science Publications (2011)Google Scholar
  9. 9.
    Minh Chieu, V., Luengo, V., Vadcard, L.: Student Modeling in Orthopedic Surgery Training: Exploiting Symbiosis between Temporal Bayesian Networks and Fine-grained Didactical Analysis. In: International Journal of Artificial Intelligence in Education 20, pp. 269–301. IOS Press (2010)Google Scholar
  10. 10.
    Lynch, C., Ashley, K., Aleven, V., Pinkwart, N.: Defining Ill-Defined Domains; A literature survey. In: Proc. Intelligent Tutoring Systems for Ill-Defined Domains Workshop, ITS 2006, pp. 1–10 (2006)Google Scholar
  11. 11.
    Rabatel, J., Bringay, S., Poncelet, P.: Mining Sequential Patterns: A Context-Aware Approach. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D.A. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 471, pp. 23–41. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Stendardo, N., Kalousis, A.: Relationship-aware sequential pattern mining. CoRR 1212, 5389 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université Grenoble AlpesSt-Martin d’HèresFrance
  2. 2.Ecole Supérieure d’Infotronique d’HaïtiHaitiUSA

Personalised recommendations