Towards a Navigation Paradigm for Triadic Concepts

  • Sebastian Rudolph
  • Christian Săcărea
  • Diana Troancă
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9113)


The simple formalization and the intuitive graphical representation are main reasons for the growing popularity of Formal Concept Analysis (FCA). FCA gives the user the possibility to explore the structure of data and understand correlations and implications in the data set. Recently, triadic FCA (3FCA) has become increasingly popular, but exploring triadic conceptual landscapes is not easy, especially because of the less immediate structure of the space of triadic concepts. Even more, available graphical representations of trilattices are barely intelligible and hard to obtain even for small data sets. Driven by practical requirements, we propose a new navigation paradigm for triadic conceptual landscapes based on a neighborhood notion arising from appropriately defined dyadic concept lattices. Understanding the corresponding reachability relation gives also new theoretical insights about the behavior of triadic concepts and the corresponding triadic data sets.


Derivation Operator Concept Lattice Formal Context Formal Concept Analysis Object Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cerf, L., Besson, J., Robardet, C., Boulicaut, J.: Closed patterns meet n-ary relations. TKDD 3(1), 3:1–3:6 (2009)CrossRefGoogle Scholar
  2. 2.
    Ferré, S., Ridoux, O.: Introduction to logical information systems. Inf. Process. Manage. 40(3), 383–419 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ganter, B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 186–195. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  4. 4.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999) CrossRefzbMATHGoogle Scholar
  5. 5.
    Glodeanu, C.V.: Tri-ordinal factor analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 125–140. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Gnatyshak, D., Ignatov, D.I., Kuznetsov, S.O.: From triadic FCA to triclustering: Experimental comparison of some triclustering algorithms. In: Ojeda-Aciego, M., Outrata, J. (eds.) Proceedings of the Tenth International Conference on Concept Lattices and Their Applications, La Rochelle, France, October 15–18, 2013. CEUR Workshop Proceedings, vol. 1062, pp. 249–260. (2013)Google Scholar
  7. 7.
    Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a galois lattice with conventional information retrieval methods. Int. J. Man-Mach. Stud. 38(5), 747–767 (1993)CrossRefGoogle Scholar
  8. 8.
    Ignatov, D.I., Kuznetsov, S.O., Poelmans, J., Zhukov, L.E.: Can triconcepts become triclusters? Int. J. Gen. Syst. 42(6), 572–593 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS - an algorithm for mining iceberg tri-lattices. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), pp. 907–911. IEEE Computer Society (2006)Google Scholar
  10. 10.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared conceptualizations in folksonomies. J. Web Semant. 6(1), 38–53 (2008)CrossRefGoogle Scholar
  11. 11.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  12. 12.
    Wille, R.: The basic theorem of triadic concept analysis. Order 12(2), 149–158 (1995)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sebastian Rudolph
    • 1
  • Christian Săcărea
    • 2
  • Diana Troancă
    • 2
  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.Babeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations