Skip to main content

Conservation Genetics of the American Horseshoe Crab (Limulus polyphemus): Allelic Diversity, Zones of Genetic Discontinuity, and Regional Differentiation

  • Chapter
Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management

Abstract

Extensive studies of genetic variation of Atlantic horseshoe crab Limulus polyphemus populations have revealed the presence of considerable allelic diversity and population structuring that appear to reflect the actions of various evolutionary processes. We have expanded on our previous efforts to gain a more refined understanding of L. polyphemus population structure by surveying 792 additional animals distributed among 12 additional spawning aggregations. Here we report on variation at 13 microsatellite DNA markers for 1,684 horseshoe crabs sampled from 33 spawning assemblages from northern Maine to the Yucatan Peninsula, Mexico. Average unbiased heterozygosity (uH E ) was high (0.74 ± 0.01), the number of private alleles was low (0.06 ± 0.04), effective population size (N e) ranged from 22 to 187, inbreeding (F) ranged from −0.07 to 0.07, and tests for genic differentiation among populations indicated shallow but statistically significant differentiation within regions and highly significant differences among regions (P < 0.005). Current findings are consistent with previous research by this group in suggesting a series of genetic discontinuities across the species’ range that could indicate regional adaptive significance or reflect vicariant geographic events. Additional collections allowed improved delineation of structuring (as reflected by two new zones of genetic discontinuity) along the southeast Atlantic coast as well as identification of previously undetected shallow but significant structuring along the Florida Gulf coast. Regional groupings may warrant management unit recognition based on the patterns observed among multiple genetic metrics. The integration of this information with previously identified genetic variation and ecological data is essential to developing an ecologically and evolutionarily sound conservation management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden

    Google Scholar 

  • ASMFC (Atlantic States Marine Fisheries Commission) (1998) Interstate fishery management plan for horseshoe crab. ASMFC, Fishery Management report no. 32, Washington, DC

    Google Scholar 

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Baker AJ, Gonzalez PM, Piersma T et al (2004) Rapid population decline in red knots: fitness consequences of decreased refueling rates and late arrival in Delaware Bay. Proc R Soc Lond B Biol Sci 271:875–882

    Article  Google Scholar 

  • Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–415

    Article  PubMed  Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Botton ML, Loveland RE (2003) Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware estuary. Estuaries 26:1472–1479

    Article  Google Scholar 

  • Brockmann HJ, Colson T, Potts W (1994) Sperm competition in horseshoe crabs (Limulus polyphemus). Behav Ecol Sociobiol 35:153–160

    Article  Google Scholar 

  • Brockmann HJ, Nguyen C, Potts W (2000) Paternity in horseshoe crabs when spawning in multiple male groups. Anim Behav 60:837–849

    Article  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Cornuet J-M, Piry S, Luikart G et al (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Google Scholar 

  • Ehlinger GS, Tankersley RA (2004) Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions. Biol Bull 206:87–94

    Article  PubMed  Google Scholar 

  • Ehlinger GS, Tankersley RA (2007) Reproductive ecology of the American horseshoe crab Limulus polyphemus in the Indian River Lagoon: an overview. Fla Sci 70:449–463

    Google Scholar 

  • Ehlinger GS, Tankersley RA (2009) Ecology of horseshoe crabs in microtidal lagoons. In: Tanacredi JT, Botton M, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, New York, pp 149–162

    Chapter  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–455

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faurby S, King TL, Obst M et al (2010) Population dynamics of American horseshoe crabs–historic climatic events and recent demographic pressures. Mol Ecol 19:3088–3100

    Article  PubMed  Google Scholar 

  • Fulford RS, Haehn RA (2012) An evaluation of Mississippi barrier islands as spawning and nesting habitat for the American horseshoe crab, Limulus polyphemus, with implications for island restoration. Gulf Caribb Res 24:51–62

    Article  Google Scholar 

  • Gerhart SD (2007) A review of the biology and management of horseshoe crabs with emphasis on Florida populations. Fish and Wildlife Research Institute, St. Petersburg, http://research.myfwc.com. Accessed Jan 2015

    Google Scholar 

  • Gomez-Aguirre S (1993) Cacerolita de Mar (Limulus polyphemus L.) en la Peninsula de Yucatan. In: Salazar-Vallejo SI, Gonzalez NE (eds) Biodiversidad Marina ye Costera de Mexico. Com. Nal. Biodiversidad y CIQRO, Mexico, D.F., pp 650–659

    Google Scholar 

  • Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Graham LJ, Botton ML, Hata D et al (2009) Prosomal-width-to-weight relationships in American horseshoe crabs (Limulus polyphemus): examining conversion factors used to estimate landings. Fish Bull 107:235–243

    Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Hallerman EM (2003) Population genetics: principles and applications for fisheries scientists. American Fisheries Society, Bethesda

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9pp, art. 4, 178kb. http://palaeoelectronica.org/2001_1/past/issue1_01.htm

  • Hastings A (1993) Complex interactions between dispersal and dynamics–lessons from coupled logistic equations. Ecology 74:1362–1372

    Article  Google Scholar 

  • Höss M, Pääbo S (1993) DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res 21:3913–3914

    Article  PubMed Central  PubMed  Google Scholar 

  • King TL, Eackles MS, Spidle AP et al (2005) Regional differentiation and sex-biased dispersal among populations of the horseshoe crab Limulus polyphemus. Trans Am Fish Soc 134:441–465

    Article  Google Scholar 

  • King TL, Switzer JF, Morrison CL et al (2006) Comprehensive genetic analyses reveal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act. Mol Ecol 15:4331–4359

    Article  CAS  PubMed  Google Scholar 

  • Levin J, Bang FB (1968) Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin. Thromb Diath Haemorrh 19(1):186–197

    CAS  PubMed  Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60:2399–2402

    Article  PubMed  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Calvert W, Stirling I et al (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierce JP, Tan G, Gaffney PM (2000) Delaware Bay and Chesapeake Bay populations of the horseshoe crab (Limulus polyphemus) are genetically distinct. Estuaries 23:690–698

    Article  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M et al (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Provancha J (1997) Annual report for sea turtle netting in Mosquito Lagoon. NMFS Permit #942, FL Permit #114

    Google Scholar 

  • Ramilo ST, Wang J (2012) The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol Ecol Resour 12:873–884

    Article  Google Scholar 

  • Ramstad KM, Woody CA, Sage GK et al (2004) Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska. Mol Ecol 13:277–290

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Riska B (1981) Morphological variation in the horseshoe crab Limulus polyphemus. Evolution 35:647–658

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-PC: numerical taxonomy and multivariate analysis systems, Version 2.10. Exeter Software, Setauket

    Google Scholar 

  • Ryder O (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Saunders NC, Kessler LG, Avise JC (1986) Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics 112:613–627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheidt D, Lowers R (2001) Using an aerial survey to document the extent of a horseshoe crab die-off in Florida. In: American Fisheries Society annual meeting, Baltimore, MD

    Google Scholar 

  • Selander RK, Yang SY, Lewontin RC et al (1970) Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic “relic”. Evolution 24:402–414

    Article  Google Scholar 

  • Shuster CN Jr (1979) Distribution of the American horseshoe “crab”, Limulus polyphemus (L.). In: Cohen E (ed) Biomedical applications of the horseshoe crab (Limulidae). Alan R. Liss, Inc., New York, pp 3–26

    Google Scholar 

  • Shuster CS, Barlow RB, Brockmann HJ (eds) (2003) The American horseshoe crab. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Sokal RR, Rohlf FJ (1994) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman & Co., New York

    Google Scholar 

  • Swofford DL, Selander RB (1981) BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283

    Google Scholar 

  • Walls EA, Berkson J, Smith SA (2002) The horseshoe crab, Limulus Polyphemus: 200 million years of existence, 100 years of study. Rev Fish Sci 10:39–73

    Article  Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181:1579–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zaldivar-Rae J, Sapien-Silva RE, Rosales-Raya M et al (2009) American horseshoe crabs, Limulus polyphemus, in Mexico: open possibilities. In: Tanacredi JT, Botton M, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, New York, pp 97–113

    Chapter  Google Scholar 

Download references

Acknowledgements

The U.S. Geological Survey (State Partnership and Quick Response programs), the Atlantic States Marine Fisheries Commission, and the AAAS Women’s International Science Collaboration Program funded this research. The following individuals graciously provided L. polyphemus tissue samples: S. Schaller, C. McBane, K. Tuxbury, C. Grahn, B. Battelle, M-J. James-Pirri, T. O’Connell, J. Mattei, R. Chapman, G. Ehlinger, L. Barton, T. Summers, C. Callahan, C. Morrison, D.R. Smith, K. Voges, A. Garcia, Z. Johnson, R. Johnson, K. Hovatter, V. Robbins, and P. Pooler. Assistance with the Yucatan field collection was provided by G. V. Rios, Centro Regional de Investigación Pesquera, Yucalpetén, Mexico. We thank the State of Florida Fish and Wildlife Conservation Commission and Ryan Gandy and Michael Tringali (St. Petersburg Office) for their kind help in providing genotype data on the newest Florida collections. Laboratory assistance was provided by B. Eleby, R. Long, R. Johnson, and M. Meadows. We thank J. Young for assistance in generating the collection site map. Funding for EH’s participation in this work was provided in part by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture. Use of trade, product, or firm names does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim L. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

King, T.L., Eackles, M.S., Aunins, A.W., Brockmann, H.J., Hallerman, E., Brown, B.L. (2015). Conservation Genetics of the American Horseshoe Crab (Limulus polyphemus): Allelic Diversity, Zones of Genetic Discontinuity, and Regional Differentiation. In: Carmichael, R., Botton, M., Shin, P., Cheung, S. (eds) Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-19542-1_4

Download citation

Publish with us

Policies and ethics