Skip to main content

Immunopathogenesis of Psoriasis Skin and Nail

  • Chapter
  • First Online:
  • 1815 Accesses

Abstract

In this chapter, an overview will be presented of the current understanding of the immunopathogenesis of psoriatic skin disease, nail pathology, and the important clinical and therapeutic implications. Psoriasis is an immune-mediated disorder with varying global prevalence and is associated with environmental triggers, including stress, trauma, medications, and infections.

Plaque psoriasis or psoriasis vulgaris, characterized clinically by erythematous plaques with silvery scale, is the most common type of psoriasis affecting 85–90 % of all patients with the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Identification and Management of Psoriasis and Associated Comorbidity (IMPACT) project team. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–85.

    Article  PubMed  CAS  Google Scholar 

  2. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–71.

    Article  PubMed  CAS  Google Scholar 

  3. Sabat R, Sterry W, Philipp S, Wolk K. Three decades of psoriasis research: where has it led us? Clin Dermatol. 2007;25(6):504–9.

    Article  PubMed  Google Scholar 

  4. Komine M, Karakawa M, Takekoshi T, Sakurai N, Minatani Y, Mitsui H, et al. Early inflammatory changes in “perilesional” skin of psoriatic plaques: is there interaction between dendritic cells and keratinocytes? J Invest Dermatol. 2007;127(8):1915–22.

    Article  PubMed  CAS  Google Scholar 

  5. Krueger JG, Bowcock A. Psoriasis pathophysiology: current concepts of pathogenesis. Ann Rheum Dis. 2005;64 Suppl 2:ii30–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Bos JD, Hulsebosch HJ, Krieg SR, Bakker PM, Cormane RH. Immunocompetent cells in psoriasis. In situ immunophenotyping by monoclonal antibodies. Arch Dermatol Res. 1983;275(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  7. Chowaniec O, Jablonska S, Beutner EH, Proniewska M, Jarzabek-Chorzelska M, Rzesa G. Earliest clinical and histological changes in psoriasis. Dermatologica. 1981;163(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  8. Speight EL, Essex TJ, Farr PM. The study of plaques of psoriasis using a scanning laser-Doppler velocimeter. Br J Dermatol. 1993;128(5):519–24.

    Article  PubMed  CAS  Google Scholar 

  9. Goodfield M, Hull SM, Holland D, Roberts G, Wood E, Reid S, et al. Investigations of the ‘active’ edge of plaque psoriasis: vascular proliferation precedes changes in epidermal keratin. Br J Dermatol. 1994;131(6):808–13.

    Article  PubMed  CAS  Google Scholar 

  10. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509.

    Article  PubMed  CAS  Google Scholar 

  11. Barker JN. Adhesion molecules in cutaneous inflammation. Ciba Found Symp. 1995;189:91–101.

    PubMed  CAS  Google Scholar 

  12. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161–8.

    Article  PubMed  CAS  Google Scholar 

  13. Prinz JC, Gross B, Vollmer S, Trommler P, Strobel I, Meurer M, et al. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products. Eur J Immunol. 1994;24(3):593–8.

    Article  PubMed  CAS  Google Scholar 

  14. Nicolas JF, Chamchick N, Thivolet J, Wijdenes J, Morel P, Revillard JP. CD4 antibody treatment of severe psoriasis. Lancet. 1991;338(8762):321.

    Article  PubMed  CAS  Google Scholar 

  15. Prinz J, Braun-Falco O, Meurer M, Daddona P, Reiter C, Rieber P, et al. Chimaeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet. 1991;338(8762):320–1.

    Article  PubMed  CAS  Google Scholar 

  16. Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG, Gottlieb AB, et al. Response of psoriasis to a lymphocyte-selective toxin (DAB3891L-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med. 1995;1(5):442–7.

    Article  PubMed  CAS  Google Scholar 

  17. Abrams JR, Kelley SL, Hayes E, Kikuchi T, Brown MJ, Kang S, et al. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med. 2000;192(5):681–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202(1):135–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Funk J, Langeland T, Schrumpf E, Hanssen LE. Psoriasis induced by interferon-alpha. Br J Dermatol. 1991;125(5):463–5.

    Article  PubMed  CAS  Google Scholar 

  20. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.

    Article  PubMed  CAS  Google Scholar 

  21. Buchau AS, Gallo RL. Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol. 2007;25(6):616–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Victor FC, Gottlieb AB, Menter A. Changing paradigms in dermatology: tumor necrosis factor alpha (TNF-alpha) blockade in psoriasis and psoriatic arthritis. Clin Dermatol. 2003;21(5):392–7.

    Article  PubMed  Google Scholar 

  23. Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp RD. Elevated tumour necrosis factor-alpha (TNF-alpha) biological activity in psoriatic skin lesions. Clin Exp Immunol. 1994;96(1):146–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Victor FC, Gottlieb AB. TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol. 2002;1(3):264–75.

    PubMed  Google Scholar 

  25. Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S, Dombrovskiy V, et al. Differential expression of phosphorylated NF-kappaB/RelA in normal and psoriatic epidermis and downregulation of NF-kappaB in response to treatment with etanercept. J Invest Dermatol. 2005;124(6):1275–83.

    Article  PubMed  CAS  Google Scholar 

  26. Brotas AM, Cunha JM, Lago EH, Machado CC, Carneiro SC. Tumor necrosis factor-alpha and the cytokine network in psoriasis. An Bras Dermatol. 2012;87(5):673–81.

    Article  PubMed  Google Scholar 

  27. Homey B, Alenius H, Müller A, Soto H, Bowman EP, Yuan W, et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med. 2002;8(2):157–65.

    Article  PubMed  CAS  Google Scholar 

  28. Ackermann L, Harvima IT, Pelkonen J, Ritamaki-Salo V, Naukkarinen A, Harvima RJ, et al. Mast cells in psoriatic skin are strongly positive for interferon-gamma. Br J Dermatol. 1999;140(4):624–33.

    Article  PubMed  CAS  Google Scholar 

  29. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822(1):21–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187(1):490–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kritas SK, Saggini A, Varvara G, Murmura G, Caraffa A, Antinolfi P, et al. Impact of mast cells on the skin. Int J Immunopathol Pharmacol. 2013;26(4):855–9.

    PubMed  CAS  Google Scholar 

  32. Nestle FO, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J Clin Invest. 1994;94(1):202–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol. 2002;3(6):549–57.

    Article  PubMed  CAS  Google Scholar 

  35. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–69.

    Article  PubMed  CAS  Google Scholar 

  36. Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121(13):2402–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    Article  PubMed  CAS  Google Scholar 

  38. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.

    Article  PubMed  CAS  Google Scholar 

  39. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7.

    Article  PubMed  CAS  Google Scholar 

  41. Wolk K, Witte E, Warszawska K, Schulze-Tanzil G, Witte K, Philipp S, et al. The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol. 2009;39(12):3570–81.

    Article  PubMed  CAS  Google Scholar 

  42. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10(8):857–63.

    Article  PubMed  CAS  Google Scholar 

  43. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  44. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet. 2001;357(9271):1842–7.

    Article  PubMed  CAS  Google Scholar 

  45. Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, et al. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet. 2005;366(9494):1367–74.

    Article  PubMed  CAS  Google Scholar 

  46. Menter A, Tyring SK, Gordon K, Kimball AB, Leonardi CL, Langley RG, et al. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J Am Acad Dermatol. 2008;58(1):106–15.

    Article  PubMed  Google Scholar 

  47. Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CE, Nakanishi AM, et al. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br J Dermatol. 2005;152(6):1304–12.

    Article  PubMed  CAS  Google Scholar 

  48. Malaviya R, Sun Y, Tan JK, Wang A, Magliocco M, Yao M, et al. Etanercept induces apoptosis of dermal dendritic cells in psoriatic plaques of responding patients. J Am Acad Dermatol. 2006;55(4):590–7.

    Article  PubMed  Google Scholar 

  49. Kivelevitch D, Mansouri B, Menter A. Long term efficacy and safety of etanercept in the treatment of psoriasis and psoriatic arthritis. Biologics. 2014;17(8):169–82.

    Google Scholar 

  50. Tonel G, Conrad C, Laggner U, Di Meglio P, Grys K, McClanahan TK, et al. Cutting edge: a critical functional role for IL-23 in Psoriasis. J Immunol. 2010;185(10):5688–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Krueger GG, Langley R, Leonardi C, Yeilding N, Guzzo C, Wang Y, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 2007;356(6):580–92.

    Article  PubMed  CAS  Google Scholar 

  52. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74.

    Article  PubMed  CAS  Google Scholar 

  53. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    Article  PubMed  CAS  Google Scholar 

  54. Belge K, Brück J, Ghoreschi K. Advances in treating psoriasis. F1000Prime Rep. 2014;6:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Miller GT, Hochman PS, Meier W, Tizard R, Bixler SA, Rosa MD, et al. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med. 1993;178(1):211–22.

    Article  PubMed  CAS  Google Scholar 

  56. Krueger GG, Papp KA, Stough DB, Loven KH, Gulliver WP, Ellis CN. A randomized, double-blind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J Am Acad Dermatol. 2002;47(6):821–33.

    Article  PubMed  Google Scholar 

  57. Iannone F, Lapadula G. The inhibitor of costimulation of T cells: abatacept. J Rheumatol Suppl. 2012;89:100–2.

    Article  PubMed  CAS  Google Scholar 

  58. Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998;338(25):1813–21.

    Article  PubMed  CAS  Google Scholar 

  59. Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. J Am Soc Nephrol. 2002;13(2):559–75.

    PubMed  CAS  Google Scholar 

  60. Moreland L, Bate G, Kirkpatrick P. Abatacept. Nat Rev Drug Discov. 2006;5(3):185–6.

    Article  PubMed  CAS  Google Scholar 

  61. Bissonnette R, Langley RG, Papp K, Matheson R, Toth D, Hultquist M, et al. Humanized anti-CD2 monoclonal antibody treatment of plaque psoriasis: efficacy and pharmacodynamic results of two randomized, double-blind, placebo-controlled studies of intravenous and subcutaneous siplizumab. Arch Dermatol Res. 2009;301(6):429–42.

    Article  PubMed  CAS  Google Scholar 

  62. Schafer P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem Pharmacol. 2012;83(12):1583–90.

    Article  PubMed  CAS  Google Scholar 

  63. Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H, Rothfuss O, et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med. 2011;208(11):2291–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41.

    Article  CAS  Google Scholar 

  65. Hsu L, Armstrong AW. JAK inhibitors: treatment efficacy and safety profile in patients with psoriasis. J Immunol Res. 2014;2014:283617. Epub 2014 May 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wilson FC, Icen M, Crowson CS, McEvoy MT, Gabriel SE, Kremers HM. Incidence and clinical predictors of psoriatic arthritis in patients with psoriasis: a population-based study. Arthritis Rheum. 2009;61(2):233–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gelfand JM, Gladman DD, Mease PJ, Smith N, Margolis DJ, Nijsten T, et al. Epidemiology of psoriatic arthritis in the population of the United States. J Am Acad Dermatol. 2005;53(4):573.

    Article  PubMed  Google Scholar 

  68. Zaias N. Embryology of the human nail. Arch Dermatol. 1963;87:37–53.

    Article  PubMed  CAS  Google Scholar 

  69. Jiaravuthisan MM, Sasseville D, Vender RB, Murphy F, Muhn CY. Psoriasis of the nail: anatomy, pathology, clinical presentation, and a review of the literature on therapy. J Am Acad Dermatol. 2007;57(1):1–27.

    Article  PubMed  Google Scholar 

  70. Zaias N. Psoriasis of the nail. A clinical-pathologic study. Arch Dermatol. 1969;99(5):567–79.

    Article  PubMed  CAS  Google Scholar 

  71. Krueger JG. The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol. 2002;46(1):1–23.

    Article  PubMed  Google Scholar 

  72. McGonagle D, Benjamin M, Tan AL. The pathogenesis of psoriatic arthritis and associated nail disease: not autoimmune after all? Curr Opin Rheumatol. 2009;21(4):340–7.

    Article  PubMed  CAS  Google Scholar 

  73. Tan AL, Benjamin M, Toumi H, Grainger AJ, Tanner SF, Emery P, et al. The relationship between the extensor tendon enthesis and the nail in distal interphalangeal joint disease in psoriatic arthritis--a high-resolution MRI and histological study. Rheumatology (Oxford). 2007;46(2):253–6.

    Article  CAS  Google Scholar 

  74. McGonagle D, Marzo-Ortega H, O’Connor P, Gibbon W, Pease C, Reece R, et al. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis Rheum. 2002;46(2):489–93.

    Article  PubMed  Google Scholar 

  75. McGonagle D, Marzo-Ortega H, O’Connor P, Gibbon W, Hawkey P, Henshaw K, et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis. 2002;61(6):534–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami R. Saraiya MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saraiya, A.R., Gottlieb, A.B. (2016). Immunopathogenesis of Psoriasis Skin and Nail. In: Adebajo, A., Boehncke, WH., Gladman, D., Mease, P. (eds) Psoriatic Arthritis and Psoriasis. Springer, Cham. https://doi.org/10.1007/978-3-319-19530-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19530-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19529-2

  • Online ISBN: 978-3-319-19530-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics