Skip to main content

Genetics of Psoriasis

  • Chapter
  • First Online:
Psoriatic Arthritis and Psoriasis

Abstract

Psoriasis has long been considered a genetic disorder. The first observation that psoriasis is an inherited, familial skin disorder was made in 1957. Extensive epidemiologic evidence and monozygotic twin concordance studies confirmed familial clustering of this chronic inflammatory disease and drove scientific investigation into the genetic basis of psoriasis. Since 1957, the list of psoriasis-associated genetic polymorphisms, including some rare causal mutations, has grown tremendously due to advanced high-throughput genotyping platforms and statistical methods. Nevertheless, the majority of psoriasis patients lack known psoriasis-associated susceptibility loci and the exact molecular mechanisms by which polymorphisms contribute to psoriasis remains poorly understood. Recent work points to a complex interplay between genetics, epigenetics, and the inflammatory signaling networks of skin and immune cell mediators. In contrast, other mutations appear to be causative, such as the recently identified mutations in IL36RN and CARD14, and shed light on new immunologic pathways driving pustular psoriasis. Evidence is also rapidly accumulating for the role of epigenetic changes in psoriasis heritability. The decreasing cost and rapid advancements in genetic technologies in combination with the formation of multi-institutional patient registries will likely result in a better understanding of the “missing heritability” in psoriasis and other complex, multigenic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gudjonsson JE, Elder JT. Psoriasis: epidemiology. Clin Dermatol. 2007;25:535–46.

    Article  PubMed  Google Scholar 

  2. Brandrup F, Holm N, Grunnet N, et al. Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm Venereol. 1982;62:229–36.

    PubMed  CAS  Google Scholar 

  3. Farber EM, Nall ML, Watson W. Natural history of psoriasis in 61 twin pairs. Arch Dermatol. 1974;109:207–11.

    Article  PubMed  CAS  Google Scholar 

  4. Lonnberg AS, Skov L, Skytthe A, et al. Heritability of psoriasis in a large twin sample. Br J Dermatol. 2013;169:412–6.

    Article  PubMed  CAS  Google Scholar 

  5. Grjibovski AM, Olsen AO, Magnus P, et al. Psoriasis in Norwegian twins: contribution of genetic and environmental effects. J Eur Acad Dermatol Venereol. 2007;21:1337–43.

    Article  PubMed  CAS  Google Scholar 

  6. Russell TJ, Schultes LM, Kuban DJ. Histocompatibility (HL-A) antigens associated with psoriasis. N Engl J Med. 1972;287:738–40.

    Article  PubMed  CAS  Google Scholar 

  7. Tiilikainen A, Lassus A, Karvonen J, et al. Psoriasis and HLA-Cw6. Br J Dermatol. 1980;102:179–84.

    Article  PubMed  CAS  Google Scholar 

  8. Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41:199–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Clop A, Bertoni A, Spain SL, et al. An in-depth characterization of the major psoriasis susceptibility locus identifies candidate susceptibility alleles within an HLA-C enhancer element. PLoS One. 2013;8:e71690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Varla-Leftherioti M. The significance of the women’s repertoire of natural killer cell receptors in the maintenance of pregnancy. Chem Immunol Allergy. 2005;89:84–95.

    Article  PubMed  CAS  Google Scholar 

  11. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–63.

    Article  PubMed  CAS  Google Scholar 

  12. Hubbard T, Barker D, Birney E, et al. The Ensembl genome database project. Nucleic Acids Res. 2002;30:38–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Luszczek W, Manczak M, Cislo M, et al. Gene for the activating natural killer cell receptor, KIR2DS1, is associated with susceptibility to psoriasis vulgaris. Hum Immunol. 2004;65:758–66.

    Article  PubMed  CAS  Google Scholar 

  14. Martin MP, Gao X, Lee JH, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31:429–34.

    PubMed  CAS  Google Scholar 

  15. Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol. 2004;173:4273–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gudjonsson JE, Karason A, Antonsdottir A, et al. Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br J Dermatol. 2003;148:233–5.

    Article  PubMed  CAS  Google Scholar 

  17. Lysell J, Tessma M, Nikamo P, et al. Clinical Characterisation at Onset of Childhood Psoriasis – A Cross Sectional Study in Sweden. Acta Derm Venereol. 2015;95:457–61.

    Article  PubMed  Google Scholar 

  18. Asumalahti K, Ameen M, Suomela S, et al. Genetic analysis of PSORS1 distinguishes guttate psoriasis and palmoplantar pustulosis. J Invest Dermatol. 2003;120:627–32.

    Article  PubMed  CAS  Google Scholar 

  19. Mallon E, Bunce M, Savoie H, et al. HLA-C and guttate psoriasis. Br J Dermatol. 2000;143:1177–82.

    Article  PubMed  CAS  Google Scholar 

  20. Mallbris L, Wolk K, Sanchez F, et al. HLA-Cw*0602 associates with a twofold higher prevalence of positive streptococcal throat swab at the onset of psoriasis: a case control study. BMC Dermatol. 2009;9:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fry L, Powles AV, Corcoran S, et al. HLA Cw*06 is not essential for streptococcal-induced psoriasis. Br J Dermatol. 2006;154:850–3.

    Article  PubMed  CAS  Google Scholar 

  22. Ozawa A, Miyahara M, Sugai J, et al. HLA class I and II alleles and susceptibility to generalized pustular psoriasis: significant associations with HLA-Cw1 and HLA-DQB1*0303. J Dermatol. 1998;25:573–81.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez S, Martinez-Borra J, Del Rio JS, et al. The OTF3 gene polymorphism confers susceptibility to psoriasis independent of the association of HLA-Cw*0602. J Invest Dermatol. 2000;115:824–8.

    Article  PubMed  CAS  Google Scholar 

  24. Holm SJ, Carlen LM, Mallbris L, et al. Polymorphisms in the SEEK1 and SPR1 genes on 6p21.3 associate with psoriasis in the Swedish population. Exp Dermatol. 2003;12:435–44.

    Article  PubMed  CAS  Google Scholar 

  25. Feng BJ, Sun LD, Soltani-Arabshahi R, et al. Multiple Loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet. 2009;5:e1000606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Knight J, Spain SL, Capon F, et al. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis. Hum Mol Genet. 2012;21:5185–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Okada Y, Han B, Tsoi LC, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014;95:162–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Matthews D, Fry L, Powles A, et al. Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet. 1996;14:231–3.

    Article  PubMed  CAS  Google Scholar 

  29. Tomfohrde J, Silverman A, Barnes R, et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science. 1994;264:1141–5.

    Article  PubMed  CAS  Google Scholar 

  30. Nair RP, Henseler T, Jenisch S, et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet. 1997;6:1349–56.

    Article  PubMed  CAS  Google Scholar 

  31. International Psoriasis Genetics Consortium. The International Psoriasis Genetics Study: assessing linkage to 14 candidate susceptibility loci in a cohort of 942 affected sib pairs. Am J Hum Genet. 2003;73:430–7.

    Article  Google Scholar 

  32. Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tsoi LC, Spain SL, Knight J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44:1341–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xu L, Li Y, Zhang X, et al. Deletion of LCE3C and LCE3B genes is associated with psoriasis in a northern Chinese population. Br J Dermatol. 2011;165:882–7.

    Article  PubMed  CAS  Google Scholar 

  35. Capon F, Di Meglio P, Szaub J, et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet. 2007;122:201–6.

    Article  PubMed  CAS  Google Scholar 

  36. Hurdayal R, Nieuwenhuizen NE, Revaz-Breton M, et al. Deletion of IL-4 receptor alpha on dendritic cells renders BALB/c mice hypersusceptible to Leishmania major infection. PLoS Pathog. 2013;9:e1003699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Das S, Stuart PE, Ding J, et al. Fine mapping of eight psoriasis susceptibility loci. Eur J Hum Genet. 2015;23:844–53.

    Article  PubMed  CAS  Google Scholar 

  38. Landry M, Muller SA. Generalized pustular psoriasis. Observations on the course of the disease in a familial occurrence. Arch Dermatol. 1972;105:711–6.

    Article  PubMed  CAS  Google Scholar 

  39. Blumberg H, Dinh H, Trueblood ES, et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med. 2007;204:2603–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Marrakchi S, Guigue P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365:620–8.

    Article  PubMed  CAS  Google Scholar 

  41. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360:2426–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cowen EW, Goldbach-Mansky R. DIRA, DITRA, and new insights into pathways of skin inflammation: what’s in a name? Arch Dermatol. 2012;148:381–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Carapito R, Isidor B, Guerouaz N, et al. Homozygous IL36RN mutation and NSD1 duplication in a patient with severe pustular psoriasis and symptoms unrelated to deficiency of interleukin-36 receptor antagonist. Br J Dermatol. 2015;172:302–5.

    Article  PubMed  CAS  Google Scholar 

  44. Brau-Javier CN, Gonzales-Chavez J, Toro JR. Chronic cutaneous pustulosis due to a 175-kb deletion on chromosome 2q13: excellent response to anakinra. Arch Dermatol. 2012;148:301–4.

    Article  PubMed  Google Scholar 

  45. Huffmeier U, Watzold M, Mohr J, et al. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br J Dermatol. 2014;170:202–4.

    Article  PubMed  CAS  Google Scholar 

  46. Rossi-Semerano L, Piram M, Chiaverini C, et al. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics. 2013;132:e1043–7.

    Article  PubMed  Google Scholar 

  47. Li X, Chen M, Fu X, et al. Mutation analysis of the IL36RN gene in Chinese patients with generalized pustular psoriasis with/without psoriasis vulgaris. J Dermatol Sci. 2014;76:132–8.

    Article  PubMed  CAS  Google Scholar 

  48. Berki DM, Mahil SK, Burden AD, et al. Loss of IL36RN function does not confer susceptibility to psoriasis vulgaris. J Invest Dermatol. 2014;134:271–3.

    Article  PubMed  CAS  Google Scholar 

  49. Li M, Han J, Lu Z, et al. Prevalent and rare mutations in IL-36RN gene in Chinese patients with generalized pustular psoriasis and psoriasis vulgaris. J Invest Dermatol. 2013;133:2637–9.

    Article  PubMed  CAS  Google Scholar 

  50. Sugiura K, Muto M, Akiyama M. CARD14 c.526G > C (p.Asp176His) is a significant risk factor for generalized pustular psoriasis with psoriasis vulgaris in the Japanese cohort. J Invest Dermatol. 2014;134:1755–7.

    Article  PubMed  CAS  Google Scholar 

  51. Fuchs-Telem D, Sarig O, van Steensel MA, et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet. 2012;91:163–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jordan CT, Cao L, Roberson ED, et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet. 2012;90:796–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jordan CT, Cao L, Roberson ED, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90:784–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sugiura K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J Dermatol Sci. 2014;74:187–92.

    Article  PubMed  CAS  Google Scholar 

  55. O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295–312.

    Article  PubMed  CAS  Google Scholar 

  56. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  PubMed  CAS  Google Scholar 

  57. Pivarcsi A, Stahle M, Sonkoly E. Genetic polymorphisms altering microRNA activity in psoriasis – a key to solve the puzzle of missing heritability? Exp Dermatol. 2014;23:620–4.

    Article  PubMed  CAS  Google Scholar 

  58. Kulkarni S, Qi Y, O’HUigin C, et al. Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci U S A. 2013;110:20705–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Callis Duffin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hawkes, J.E., Feng, BJ., Duffin, K.C. (2016). Genetics of Psoriasis. In: Adebajo, A., Boehncke, WH., Gladman, D., Mease, P. (eds) Psoriatic Arthritis and Psoriasis. Springer, Cham. https://doi.org/10.1007/978-3-319-19530-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19530-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19529-2

  • Online ISBN: 978-3-319-19530-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics