Advertisement

Multiple Attribute Group Decision Making Under Hesitant Fuzzy Environment

  • Weize Wang
  • Qi-An Lu
  • Li Yang
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 218)

Abstract

Hesitant fuzzy set is a very useful means to depict the decision information in the process of decision making. In this paper, motivated by the extension principle of hesitant fuzzy sets, we export Einstein operations on fuzzy sets to hesitant fuzzy sets, and develop some new arithmetic averaging aggregation operators, such as the hesitant fuzzy Einstein weighted averaging (\(\mathrm{{HFW}}{\mathrm{{A}}^\varepsilon }\)) operator, hesitant fuzzy Einstein ordered weighted averaging (\(\mathrm{{HFOW}}{\mathrm{{A}}^\varepsilon }\)) operator, and hesitant fuzzy Einstein hybrid weighted averaging (\(\mathrm{{HFHW}}{\mathrm{{A}}^\varepsilon }\)) operator, for aggregating hesitant fuzzy elements. Finally, we apply the proposed operators to multiple attribute group decision making with hesitant fuzzy information.

Keywords

Hesitant fuzzy set Einstein operation Hesitant fuzzy Einstein arithmetic averaging operator Multiple attribute group decision making (MAGDM) 

Notes

Acknowledgements

This work is supported by Natural Science Foundation of Guangxi Province (2014jjAA10065), Scientific Research Foundation of Higher Education of Guangxi Province (KY2015YB050) and the 2014 Doctoral Scientific Research Foundation of Guangxi Normal University.

References

  1. 1.
    Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operator: Theory and Applications. Kluwer, Boston (1997)CrossRefGoogle Scholar
  2. 2.
    Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators: New Trends and Applications. Physica-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Xu, Z.S., Da, Q.L.: An overview of operators for aggregating information. Int. J. Intell. Syst. 18(9), 953–969 (2003)CrossRefGoogle Scholar
  4. 4.
    Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Berlin (2007)Google Scholar
  5. 5.
    Harsanyi, J.C.: Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. J. Polit. Econ. 63(4), 309–321 (1955)CrossRefGoogle Scholar
  6. 6.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision-making. IEEE Trans. Syst. Man Cybern. Cybern. 18(1), 183–190 (1988)CrossRefGoogle Scholar
  7. 7.
    Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12(2), 153–166 (1997)CrossRefGoogle Scholar
  8. 8.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  9. 9.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)CrossRefGoogle Scholar
  10. 10.
    Zadeh, L.A.: Outline of a new approach to analysis of complex systems and decision processes interval-valued fuzzy sets. IEEE Trans. Syst. Man Cybern. SMC 3(1), 28–44 (1973)CrossRefGoogle Scholar
  11. 11.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inf. Control 31(4), 312–340 (1976)CrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.M.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)Google Scholar
  13. 13.
    Yager, R.R.: On the theory of bags. Int. J. Gen. Syst. 13(1), 23–37 (1986)CrossRefGoogle Scholar
  14. 14.
    Chakrabarty, K., Despi, I.: \(n^k\)-bags. Int. J. Intell. Syst. 22(2), 223–236 (2007)CrossRefGoogle Scholar
  15. 15.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)Google Scholar
  16. 16.
    Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)CrossRefGoogle Scholar
  17. 17.
    Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int. J. Approx. Reason. 35(1), 55–95 (2004)CrossRefGoogle Scholar
  18. 18.
    Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - the case of “intuitionistic fuzzy sets”. Fuzzy Sets Syst. 156(3), 485–491 (2005)CrossRefGoogle Scholar
  19. 19.
    Xia, M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52(3), 395–407 (2011)CrossRefGoogle Scholar
  20. 20.
    Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2009, pp. 1378–1382 (2009)Google Scholar
  21. 21.
    Xu, Z.S.: Hesitant Fuzzy Sets Theory. Springer International Publishing, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007)CrossRefGoogle Scholar
  23. 23.
    Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35(4), 417–433 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhao, H., Xu, Z.S., Ni, M., Liu, S.: Generalized aggregation operators for intuitionistic fuzzy sets. Int. J. Intell. Syst. 25(1), 1–30 (2010)CrossRefGoogle Scholar
  25. 25.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)Google Scholar
  26. 26.
    H\(\acute{a}\)jek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Economics and ManagementGuangxi Normal UniversityGuilinChina

Personalised recommendations