Skip to main content

Caspases – Key Players in Apoptosis

  • Chapter

Abstract

Caspases are the terminal proteases involved in apoptosis, as well as being involved in inflammation. The apoptotic caspases can be classified as either initiator or effector caspases based on both their position in the caspase cascade and their activation mechanism. Initiator caspases require dimerization to be activated, and cleavage of a loop called the intersubunit linker stabilizes the active enzyme. Effector caspases, on the other hand, are found as dimers in the cell and cleavage of the intersubunit linker is the key step in their activation.

The name caspase is short for cysteinyl aspartate-specific protease. As their name suggests, these enzymes hydrolyze peptide bonds after certain aspartate residues using a catalytic cysteine (with the aid of an active-site histidine residue). Caspases can be inhibited by endogenous inhibitors such as XIAP, by synthetic inhibitors which target either the active site or an allosteric site, or by post-translational modification. Further research is needed to find novel activators and inhibitors of caspases to treat diseases which involve misregulation of apoptosis.

Funding: This work was supported by a grant from the NIH (National Institutes of Health) [grant number GM065970 (to A.C.C.)].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASC:

Apoptosis-associated speck-like protein containing a CARD

CARD:

Caspase activation and recruitment domain

Caspase:

Cysteinal aspartate-specific protease

DAMPs:

Danger-associated molecular patterns

DD:

Death domain

DISC:

Death inducing signaling complex

FADD:

Fas-associated death domain

FasL:

Fas ligand

FLICE:

FADD-like interleukin 1β-converting enzyme

FLIP:

FLICE-like inhibitory protein

FLIPL :

Long splice variant of FLIP which forms a heterodimer with caspase-8

FLIPS :

Short splice variant of FLIP which blocks caspase-8 from binding death receptor

ICE:

Interleukin 1β-converting enzyme

IL-1β:

Interleukin 1β

IL-18:

Interleukin 18

PS:

Phosphatidylserine

Smac:

Second mitochondrial activator of caspases

TNFR:

Tumor necrosis factor receptor

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    CAS  PubMed  Google Scholar 

  2. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100

    CAS  PubMed  Google Scholar 

  3. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774

    CAS  PubMed  Google Scholar 

  4. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    CAS  PubMed  Google Scholar 

  5. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761–30764

    CAS  PubMed  Google Scholar 

  6. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    CAS  PubMed  Google Scholar 

  7. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    CAS  PubMed  Google Scholar 

  8. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    CAS  PubMed  Google Scholar 

  9. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76:959–962

    CAS  PubMed  Google Scholar 

  10. Milam SL, Clark AC (2009) Folding and assembly kinetics of procaspase-3. Protein Sci 18:2500–2517

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Pop C, Chen YR, Smith B, Bose K, Bobay B, Tripathy A, Franzen S, Clark AC (2001) Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. Biochemistry 40:14224–14235

    CAS  PubMed  Google Scholar 

  12. Mao PL, Jiang Y, Wee BY, Porter AG (1998) Activation of caspase-1 in the nucleus requires nuclear translocation of pro-caspase-1 mediated by its prodomain. J Biol Chem 273:23621–23624

    CAS  PubMed  Google Scholar 

  13. Baliga BC, Colussi PA, Read SH, Dias MM, Jans DA, Kumar S (2003) Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J Biol Chem 278:4899–4905

    CAS  PubMed  Google Scholar 

  14. Colussi PA, Harvey NL, Kumar S (1998) Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel function for a caspase prodomain. J Biol Chem 273:24535–24542

    CAS  PubMed  Google Scholar 

  15. Yaoita Y (2002) Inhibition of nuclear transport of caspase-7 by its prodomain. Biochem Biophys Res Commun 291:79–84

    CAS  PubMed  Google Scholar 

  16. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    CAS  PubMed  Google Scholar 

  17. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    CAS  PubMed  Google Scholar 

  18. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harbor Perspect Biol 4:a006049, 006019 pp

    Google Scholar 

  19. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    CAS  PubMed  Google Scholar 

  20. Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79

    CAS  PubMed  Google Scholar 

  21. Koenig U, Eckhart L, Tschachler E (2001) Evidence that caspase-13 is not a human but a bovine gene. Biochem Biophys Res Commun 285:1150–1154

    CAS  PubMed  Google Scholar 

  22. Rendl M, Ban J, Mrass P, Mayer C, Lengauer B, Eckhart L, Declerq W, Tschachler E (2002) Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 119:1150–1155

    CAS  PubMed  Google Scholar 

  23. Eckhart L, Ballaun C, Hermann M, VandeBerg JL, Sipos W, Uthman A, Fischer H, Tschachler E (2008) Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol Biol Evol 25:831–841

    CAS  PubMed  Google Scholar 

  24. Eckhart L, Ballaun C, Uthman A, Kittel C, Stichenwirth M, Buchberger M, Fischer H, Sipos W, Tschachler E (2005) Identification and characterization of a novel mammalian caspase with proapoptotic activity. J Biol Chem 280:35077–35080

    CAS  PubMed  Google Scholar 

  25. Masumoto J, Zhou W, Chen FF, Su F, Kuwada JY, Hidaka E, Katsuyama T, Sagara J, Taniguchi S, Ngo-Hazelett P, Postlethwait JH, Núñez G, Inohara N (2003) Caspy, a zebrafish caspase, activated by ASC oligomerization is required for pharyngeal arch development. J Biol Chem 278:4268–4276

    CAS  PubMed  Google Scholar 

  26. Feeney B, Clark AC (2005) Reassembly of active caspase-3 is facilitated by the propeptide. J Biol Chem 280:39772–39785

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    CAS  PubMed  Google Scholar 

  28. Pop C, Feeney B, Tripathy A, Clark AC (2003) Mutations in the procaspase-3 dimer interface affect the activity of the zymogen. Biochemistry 42:12311–12320

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Walters J, Pop C, Scott FL, Drag M, Swartz P, Mattos C, Salvesen GS, Clark AC (2009) A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 424:335–345

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Schipper JL, MacKenzie SH, Sharma A, Clark AC (2011) A bifunctional allosteric site in the dimer interface of procaspase-3. Biophys Chem 159:100–109

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Zorn JA, Wolan DW, Agard NJ, Wells JA (2012) Fibrils colocalize caspase-3 with procaspase-3 to foster maturation. J Biol Chem 287:33781–33795

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Wellington CL, Hayden MR (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin Genet 57:1–10

    CAS  PubMed  Google Scholar 

  33. Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–1059

    CAS  PubMed  Google Scholar 

  34. Miscione GP, Calvaresi M, Bottoni A (2010) Computational evidence for the catalytic mechanism of caspase-7. A DFT investigation. J Phys Chem B 114:4637–4645

    CAS  PubMed  Google Scholar 

  35. Sulpizi M, Rothlisberger U, Carloni P (2003) Molecular dynamics studies of caspase-3. Biophys J 84:2207–2215

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Brady KD, Giegel DA, Grinnell C, Lunney E, Talanian RV, Wong W, Walker N (1999) A catalytic mechanism for caspase-1 and for bimodal inhibition of caspase-1 by activated aspartic ketones. Bioorg Med Chem 7:621–631

    CAS  PubMed  Google Scholar 

  37. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P (2003) Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Proteins 52:212–224

    CAS  PubMed  Google Scholar 

  38. Lauber K, Bohn E, Kröber SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730

    CAS  PubMed  Google Scholar 

  39. Knies UE, Behrensdorf HA, Mitchell CA, Deutsch U, Risau W, Drexler HC, Clauss M (1998) Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci U S A 95:12322–12327

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Martin SJ, Henry CM, Cullen SP (2012) A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 46:387–397

    CAS  PubMed  Google Scholar 

  42. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    CAS  PubMed  Google Scholar 

  43. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    CAS  PubMed  Google Scholar 

  44. Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ, Lowe M (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156:495–509

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11:213–220

    CAS  PubMed  Google Scholar 

  46. Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P (2004) Caspase-1 activates nuclear factor of the kappa-enhancer in B cells independently of its enzymatic activity. J Biol Chem 279:24785–24793

    CAS  PubMed  Google Scholar 

  48. Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193:247–254

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99:11025–11030

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673

    CAS  PubMed  Google Scholar 

  52. Gulyaeva NV (2003) Non-apoptotic functions of caspase-3 in nervous tissue. Biochemistry (Mosc) 68:1171–1180

    CAS  Google Scholar 

  53. Hyman BT, Yuan J (2012) Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 13:395–406

    CAS  PubMed  Google Scholar 

  54. Rudrapatna VA, Bangi E, Cagan RL (2013) Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 14:172–177

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4:a008797

    PubMed Central  PubMed  Google Scholar 

  56. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kataoka T, Tschopp J (2004) N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol 24:2627–2636

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Thornberry NA, Chapman KT, Nicholson DW (2000) Determination of caspase specificities using a peptide combinatorial library. Methods Enzymol 322:100–110

    CAS  PubMed  Google Scholar 

  59. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    CAS  PubMed  Google Scholar 

  60. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Chéreau D, Kodandapani L, Tomaselli KJ, Spada AP, Wu JC (2003) Structural and functional analysis of caspase active sites. Biochemistry 42:4151–4160

    PubMed  Google Scholar 

  62. Blanchard H, Kodandapani L, Mittl PR, Marco SD, Krebs JF, Wu JC, Tomaselli KJ, Grütter MG (1999) The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure 7:1125–1133

    CAS  PubMed  Google Scholar 

  63. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (2001) Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A 98:14250–14255

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Schweizer A, Briand C, Grutter MG (2003) Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 278:42441–42447

    CAS  PubMed  Google Scholar 

  65. Lüthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14:641–650

    PubMed  Google Scholar 

  66. Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135:1441–1455

    CAS  PubMed  Google Scholar 

  67. Ura S, Masuyama N, Graves JD, Gotoh Y (2001) Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci U S A 98:10148–10153

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    CAS  PubMed  Google Scholar 

  69. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    CAS  PubMed  Google Scholar 

  70. Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P, Lavelle EC, Martin SJ (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:84–98

    PubMed  Google Scholar 

  71. Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14:73–78

    CAS  PubMed  Google Scholar 

  72. Wang Z, Watt W, Brooks NA, Harris MS, Urban J, Boatman D, McMillan M, Kahn M, Heinrikson RL, Finzel BC, Wittwer AJ, Blinn J, Kamtekar S, Tomasselli AG (2010) Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors. Biochim Biophys Acta 1804:1817–1831

    CAS  PubMed  Google Scholar 

  73. Vázquez J, García-Jareño A, Mondragón L, Rubio-Martinez J, Pérez-Payá E, Albericio F (2008) Conformationally restricted hydantoin-based peptidomimetics as inhibitors of caspase-3 with basic groups allowed at the S3 enzyme subsite. ChemMedChem 3:979–985

    PubMed  Google Scholar 

  74. Wang Y, Jia S, Tseng B, Drewe J, Cai SX (2007) Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: peptidomimetic replacement of the P(2) amino acid by 2-aminoaryl acids and other non-natural amino acids. Bioorg Med Chem Lett 17:6178–6182

    CAS  PubMed  Google Scholar 

  75. Soper DL, Sheville J, O’Neil SV, Wang Y, Laufersweiler MC, Oppong KA, Wos JA, Ellis CD, Fancher AN, Lu W, Suchanek MK, Wang RL, De B, Demuth TP (2006) Synthesis and evaluation of novel 1-(2-acylhydrazinocarbonyl)-cycloalkyl carboxamides as interleukin-1beta converting enzyme (ICE) inhibitors. Bioorg Med Chem Lett 16:4233–4236

    CAS  PubMed  Google Scholar 

  76. Soper DL, Sheville JX, O’Neil SV, Wang Y, Laufersweiler MC, Oppong KA, Wos JA, Ellis CD, Baize MW, Chen JJ, Fancher AN, Lu W, Suchanek MK, Wang RL, Schwecke WP, Cruze CA, Buchalova M, Belkin M, Wireko F, Ritter A, De B, Wang D, Demuth TP (2006) Synthesis and evaluation of novel 8,5-fused bicyclic peptidomimetic compounds as interleukin-1beta converting enzyme (ICE) inhibitors. Bioorg Med Chem 14:7880–7892

    CAS  PubMed  Google Scholar 

  77. Wang Y, O’Neil SV, Wos JA, Oppong KA, Laufersweiler MC, Soper DL, Ellis CD, Baize MW, Fancher AN, Lu W, Suchanek MK, Wang RL, Schwecke WP, Cruze CA, Buchalova M, Belkin M, De B, Demuth TP (2007) Synthesis and evaluation of unsaturated caprolactams as interleukin-1beta converting enzyme (ICE) inhibitors. Bioorg Med Chem 15:1311–1322

    CAS  PubMed  Google Scholar 

  78. Lee D, Long SA, Adams JL, Chan G, Vaidya KS, Francis TA, Kikly K, Winkler JD, Sung CM, Debouck C, Richardson S, Levy MA, DeWolf WE, Keller PM, Tomaszek T, Head MS, Ryan MD, Haltiwanger RC, Liang PH, Janson CA, McDevitt PJ, Johanson K, Concha NO, Chan W, Abdel-Meguid SS, Badger AM, Lark MW, Nadeau DP, Suva LJ, Gowen M, Nuttall ME (2000) Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J Biol Chem 275:16007–16014

    CAS  PubMed  Google Scholar 

  79. Lee D, Long SA, Murray JH, Adams JL, Nuttall ME, Nadeau DP, Kikly K, Winkler JD, Sung CM, Ryan MD, Levy MA, Keller PM, DeWolf WE (2001) Potent and selective nonpeptide inhibitors of caspases 3 and 7. J Med Chem 44:2015–2026

    CAS  PubMed  Google Scholar 

  80. Kravchenko DV, Kysil VM, Tkachenko SE, Maliarchouk S, Okun IM, Ivachtchenko AV (2005) Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo[3,4-c]quinoline-1,3-diones. Eur J Med Chem 40:1377–1383

    CAS  PubMed  Google Scholar 

  81. Hardy JA, Lam J, Nguyen JT, O’Brien T, Wells JA (2004) Discovery of an allosteric site in the caspases. Proc Natl Acad Sci U S A 101:12461–12466

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Walters J, Schipper JL, Swartz P, Mattos C, Clark AC (2012) Allosteric modulation of caspase 3 through mutagenesis. Biosci Rep 32:401–411

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Datta D, Scheer JM, Romanowski MJ, Wells JA (2008) An allosteric circuit in caspase-1. J Mol Biol 381:1157–1167

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Feldman T, Kabaleeswaran V, Jang SB, Antczak C, Djaballah H, Wu H, Jiang X (2012) A class of allosteric caspase inhibitors identified by high-throughput screening. Mol Cell 47:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Schweizer A, Roschitzki-Voser H, Amstutz P, Briand C, Gulotti-Georgieva M, Prenosil E, Binz HK, Capitani G, Baici A, Plückthun A, Grütter MG (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15:625–636

    CAS  PubMed  Google Scholar 

  86. Stanger K, Steffek M, Zhou L, Pozniak CD, Quan C, Franke Y, Tom J, Tam C, Elliott JM, Lewcock JW, Zhang Y, Murray J, Hannoush RN (2012) Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Nat Chem Biol 8:655–660

    CAS  PubMed  Google Scholar 

  87. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    CAS  PubMed  Google Scholar 

  88. Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM (2000) ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell 103:99–111

    CAS  PubMed  Google Scholar 

  89. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337

    CAS  PubMed  Google Scholar 

  90. Zhou Q, Snipas S, Orth K, Muzio M, Dixit VM, Salvesen GS (1997) Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem 272:7797–7800

    CAS  PubMed  Google Scholar 

  91. Ryan CA, Stennicke HR, Nava VE, Burch JB, Hardwick JM, Salvesen GS (2002) Inhibitor specificity of recombinant and endogenous caspase-9. Biochem J 366:595–601

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4804

    CAS  PubMed  Google Scholar 

  93. Xu G, Cirilli M, Huang Y, Rich RL, Myszka DG, Wu H (2001) Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410:494–497

    CAS  PubMed  Google Scholar 

  94. Xu G, Rich RL, Steegborn C, Min T, Huang Y, Myszka DG, Wu H (2003) Mutational analyses of the p35-caspase interaction. A bowstring kinetic model of caspase inhibition by p35. J Biol Chem 278:5455–5461

    CAS  PubMed  Google Scholar 

  95. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67:2168–2174

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Rehm M, Huber HJ, Dussmann H, Prehn JH (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273:7787–7790

    CAS  PubMed  Google Scholar 

  98. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18:5242–5251

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12:439–452

    CAS  PubMed  Google Scholar 

  100. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A 98:8662–8667

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Shirakura H, Hayashi N, Ogino S, Tsuruma K, Uehara T, Nomura Y (2005) Caspase recruitment domain of procaspase-2 could be a target for SUMO-1 modification through Ubc9. Biochem Biophys Res Commun 331:1007–1015

    CAS  PubMed  Google Scholar 

  102. Besnault-Mascard L, Leprince C, Auffredou MT, Meunier B, Bourgeade MF, Camonis J, Lorenzo HK, Vazquez A (2005) Caspase-8 sumoylation is associated with nuclear localization. Oncogene 24:3268–3273

    CAS  PubMed  Google Scholar 

  103. Alvarado-Kristensson M, Melander F, Leandersson K, Rönnstrand L, Wernstedt C, Andersson T (2004) p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med 199:449–458

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Voss OH, Kim S, Wewers MD, Doseff AI (2005) Regulation of monocyte apoptosis by the protein kinase Cdelta-dependent phosphorylation of caspase-3. J Biol Chem 280:17371–17379

    CAS  PubMed  Google Scholar 

  105. Li X, Wen W, Liu K, Zhu F, Malakhova M, Peng C, Li T, Kim HG, Ma W, Cho YY, Bode AM, Dong Z (2011) Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J Biol Chem 286:22291–22299

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654

    CAS  PubMed  Google Scholar 

  107. Raina D, Pandey P, Ahmad R, Bharti A, Ren J, Kharbanda S, Weichselbaum R, Kufe D (2005) c-Abl tyrosine kinase regulates caspase-9 autocleavage in the apoptotic response to DNA damage. J Biol Chem 280:11147–11151

    CAS  PubMed  Google Scholar 

  108. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Clay Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cade, C.E., Clark, A.C. (2015). Caspases – Key Players in Apoptosis. In: Bose, K. (eds) Proteases in Apoptosis: Pathways, Protocols and Translational Advances. Springer, Cham. https://doi.org/10.1007/978-3-319-19497-4_2

Download citation

Publish with us

Policies and ethics