Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2138))

  • 1208 Accesses

Abstract

Constructive algebra can be seen as an abstract version of computer algebra. In computer algebra, on the one hand, one attempts to construct efficient algorithms for solving concrete problems given in an algebraic formulation, where a problem is understood to be concrete if its hypotheses and conclusion have computational content. Constructive algebra, on the other hand, can be understood as a “preprocessing” step for computer algebra that leads to general algorithms, even if they are sometimes not efficient. In constructive algebra, one tries to give general algorithms for solving “virtually any” theorem of abstract algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abedelfatah, A.: On stably free modules over Laurent polynomial rings. Proc. Am. Math. Soc. 139, 4199–4206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abedelfatah, A.: On the action of the elementary group on the unimodular rows. J. Algebra 368, 300–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence (1994)

    Google Scholar 

  4. Amidou, M., Yengui, I.: An algorithm for unimodular completion over Laurent polynomial rings. Linear Algebra Appl. 429, 1687–1698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)

    Article  MATH  Google Scholar 

  6. Aschenbrenner, M.: Ideal membership in polynomial rings over the integers. J. Am. Math. Soc. 17, 407–441 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ayoub, C.: On constructing bases for ideals in polynomial rings over the integers. J. Number Theory 17(2), 204–225 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barhoumi, S.: Seminormality and polynomial ring. J. Algebra 322, 1974–1978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barhoumi, S., Lombardi, H.: An algorithm for the Traverso-Swan theorem over seminormal rings. J. Algebra 320, 1531–1542 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barhoumi, S., Yengui, I.: On a localization of the Laurent polynomial ring. JP. J. Algebra Number Theory Appl. 5(3), 591–602 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Barhoumi, S., Lombardi, H., Yengui, I.: Projective modules over polynomial rings: a constructive approach. Math. Nach 282, 792–799 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bass, H.: Algebraic K-Theory. W.A. Benjamin Inc., New York/Amsterdam (1968)

    MATH  Google Scholar 

  13. Bass, H.: Libération des modules projectifs sur certains anneaux de polynômes, Sém. Bourbaki 1973/74, exp. 448. Lecture Notes in Mathematics, vol. 431, pp. 228–254. Springer, Berlin/ New York (1975)

    Google Scholar 

  14. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  15. Bayer, D.: The division algorithm and the Hilbert scheme. Ph.D. dissertation, Harvard University (1982)

    Google Scholar 

  16. Bernstein, D.: Fast ideal arithmetic via lazy localization. In: Cohen, H. (ed.) Algorithmic Number Theory. Proceeding of the Second International Symposium, ANTS-II, Talence, France, 18–23 May 1996. Lecture Notes in Computer Science, vol. 1122, pp. 27–34. Springer, Berlin (1996)

    Google Scholar 

  17. Bernstein, D.: Factoring into coprimes in essentially linear time. J. Algorithms 54, 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boileau, A., Joyal, A.: La Logique des Topos. J. Symb. Log. 46, 6–16 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bourbaki, N.: Algèbre Commutative. Chapitres 5–6. Masson, Paris (1985)

    Google Scholar 

  20. Brewer, J., Costa, D.: Projective modules over some non-Noetherian polynomial rings. J. Pure Appl. Algebra 13, 157–163 (1978)

    Article  MathSciNet  Google Scholar 

  21. Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O.: New developments in the theory of Groebner bases and applications to formal verification. J. Pure Appl. Algebra 213, 1612–1635 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal. Ph.D. thesis, University of Innsbruck (1965)

    Google Scholar 

  23. Buchberger, B.: A critical pair/completion algorithm for finitely-generated ideals in rings. In: Logic and Machines: Decision Problems and Complexity. Springer Lectures Notes in Computer Science, vol. 171, pp. 137–161. Springer, New York (1984)

    Google Scholar 

  24. Buchmann, J., Lenstra, H.: Approximating rings of integers in number fields. J. Théor. Nombres Bordeaux 6(2), 221–260 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Byrne, E., Fitzpatrick, P.: Gröbner bases over Galois rings with an application to decoding alternant codes. J. Symb. Comput. 31, 565–584 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cahen, P.-J.: Construction B,I,D et anneaux localement ou résiduellement de Jaffard. Archiv. Math. 54, 125–141 (1990)

    Google Scholar 

  27. Cahen, P.-J., Elkhayyari, Z., Kabbaj, S.: Krull and valuative dimension of the Serre conjecture ring \(R\langle n\rangle\). In: Commutative Ring Theory. Lecture Notes in Pure and Applied Mathematics, vol. 185, pp. 173–180. Marcel Dekker, New York (1997)

    Google Scholar 

  28. Cai, Y., Kapur, D.: An algorithm for computing a Gröbner basis of a polynomial ideal over a ring with zero divisors. Math. Comput. Sci. 2, 601–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Caniglia, L., Cortiñas, G., Danón, S., Heintz, J., Krick, T., Solernó, P.: Algorithmic aspects of Suslin’s proof of Serre’s conjecture. Comput. Complex. 3, 31–55 (1993)

    Article  MATH  Google Scholar 

  30. Cohn, P.M.: On the structure of GL n of a ring. Publ. Math. I.H.E.S. 30, 5–54 (1966)

    Google Scholar 

  31. Coquand, T.: Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Acad. Sci. Paris, Ser. I 338, 291–294 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Coquand, T.: On seminormality. J. Algebra 305, 577–584 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Coquand, T.: A refinement of Forster’s theorem. Preprint (2007)

    Google Scholar 

  34. Coquand, T., Lombardi, H.: Hidden constructions in abstract algebra (3) Krull dimension of distributive lattices and commutative rings. In: Fontana, M., Kabbaj, S.-E., Wiegand, S. (eds.) Commutative Ring Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 131, pp. 477–499. Marcel Dekker, New York (2002)

    Google Scholar 

  35. Coquand, T., Lombardi, H.: A short proof for the Krull dimension of a polynomial ring. Am. Math. Mon. 112, 826–829 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Coquand, T., Quitté, C.: Constructive finite free resolutions. Manuscripta Math. 137, 331–345 (2011)

    Article  Google Scholar 

  37. Coquand, T., Ducos, L., Lombardi, H., Quitté, C.: L’idéal des coefficients du produit de deux polynômes. Rev. Math. Enseign. Supér. 113, 25–39 (2003)

    Google Scholar 

  38. Coquand, T., Lombardi, H., Quitté, C.: Generating nonnoetherian modules constructively. Manuscripta Math. 115, 513–520 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Coquand, T., Lombardi, H., Roy, M.-F.: An elementary characterisation of Krull dimension. In: Corsilla, L., Schuster, P. (eds.) From Sets and Types to Analysis and Topology: Towards Practicable Foundations for Constructive Mathematics. Oxford University Press, Oxford (2005)

    Google Scholar 

  40. Coquand, T., Lombardi, H., Schuster, P.: A nilregular element property. Arch. Math. 85, 49–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Coquand, T., Lombardi, H., Schuster, P.: The projective spectrum as a distributive lattice. Cahiers de Topologie et Géométrie différentielle catégoriques 48, 220–228 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Coste, M., Lombardi, H., Roy, M.-F.: Dynamical method in algebra: effective Nullstellensätze. Ann. Pure Appl. Logic 111, 203–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd edn. Springer, New York (1997)

    Google Scholar 

  44. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 4-0-2 – A Computer Algebra System for Polynomial Computations. http://www.singular.uni-kl.de (2015)

  45. Decker, W., Pfister, G.: A First Course in Computational Algebraic Geometry. AIMS Library Series. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  46. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL ’85. Lecture Notes in Computer Science, vol. 204, pp. 289–290. Springer, Berlin (1985)

    Google Scholar 

  47. Diaz-Toca, G.M., Lombardi, H.: Dynamic Galois theory. J. Symb. Comput. 45, 1316–1329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ducos, L., Monceur, S., Yengui, I.: Computing the V-saturation of finitely-generated submodules of V[X]m where V is a valuation domain. J. Symb. Comput. 72, 196–205 (2016)

    Article  MathSciNet  Google Scholar 

  49. Ducos, L., Quitté, C., Lombardi, H., Salou, M.: Théorie algorithmique des anneaux arithmétiques, de Prüfer et de Dedekind. J. Algebra 281, 604–650 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ducos, L., Valibouze, A., Yengui, I.: Computing syzygies over V[X 1, , X k ], V a valuation domain. J. Algebra 425, 133–145 (2015)

    Google Scholar 

  51. Duval, D., Reynaud, J.-C.: Sketches and computation (part II) dynamic evaluation and applications. Math. Struct. Comput. Sci. 4, 239–271 (1994) (see http://www.Imc.imag.fr/Imc-cf/Dominique.Duval/evdyn.html)

  52. Edwards, H.: Divisor Theory. Birkhäuser, Boston (1989)

    Google Scholar 

  53. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)

    MATH  Google Scholar 

  54. Ebert, G.L.: Some comments on the modular approach to Gröbner-bases. ACM SIGSAM Bull. 17, 28–32 (1983)

    Article  MATH  Google Scholar 

  55. Ellouz, A., Lombardi, H., Yengui, I.: A constructive comparison of the rings R(X) and \(\mathbf{R}\langle X\rangle\) and application to the Lequain-Simis induction theorem. J. Algebra 320, 521–533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Español, L.: Dimensión en álgebra constructiva. Doctoral thesis, Universidad de Zaragoza, Zaragoza (1978)

    Google Scholar 

  57. Español, L.: Constructive Krull dimension of lattices. Rev. Acad. Cienc. Zaragoza 37, 5–9 (1982)

    MathSciNet  MATH  Google Scholar 

  58. Español, L.: Le spectre d’un anneau dans l’algèbre constructive et applications à la dimension. Cahiers de topologie et géométrie différentielle catégorique 24, 133–144 (1983)

    MATH  Google Scholar 

  59. Español, L.: Dimension of Boolean valued lattices and rings. J. Pure Appl. Algebra 42, 223–236 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  60. Español, L.: Finite chain calculus in distributive lattices and elementary Krull dimension. In: Lamban, L., Romero, A., Rubio, J. (eds.) Contribuciones cientificas en honor de Mirian Andres Gomez Servicio de Publicaciones. Universidad de La Rioja, Logroño (2010)

    Google Scholar 

  61. Fabiańska, A.: A Maple QuillenSuslin package. http://wwwb.math.rwth-aachen.de/QuillenSuslin/ (2007)

  62. Fabiańska, A., Quadrat, A.: Applications of the Quillen-Suslin theorem to the multidimensional systems theory. INRIA Report 6126 (2007), Published in Gröbner Bases in Control Theory and Signal Processing. In: Park, H., Regensburger, G. (eds.) Radon Series on Computation and Applied Mathematics, vol. 3, pp. 23–106. de Gruyter, Berlin (2007)

    Google Scholar 

  63. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC (2002)

    Book  Google Scholar 

  64. Fitchas, N., Galligo, A.: Nullstellensatz effectif et conjecture de Serre (Théorème de Quillen-Suslin) pour le calcul formel. Math. Nachr. 149, 231–253 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  65. Gallo, S., Mishra, B.: A solution to Kronecker’s problem. Appl. Algebra Eng. Commun. Comput. 5, 343–370 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  66. Gilmer, R.: Multiplicative Ideal Theory. Queens Paper in Pure and Applied Mathematics, vol. 90. Marcel Dekker, New York (1992)

    Google Scholar 

  67. Glaz, S.: On the weak dimension of coherent group rings. Commun. Algebra 15, 1841–1858 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  68. Glaz, S.: Commutative Coherent Rings. Lectures Notes in Mathematics, vol. 1371, 2nd edn. Springer, Berlin/Heidelberg/New York (1990)

    Google Scholar 

  69. Glaz, S.: Finite conductor properties of R(X) and \(\,\mathbf{R}\langle X\rangle\). In: Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999). Lecture Notes in Pure and Applied Mathematics, vol. 220, pp. 231–249. Marcel Dekker, New York (2001)

    Google Scholar 

  70. Glaz, S., Vasconcelos, W.V.: Flat ideals III. Commun. Algebra 12, 199–227 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  71. Gräbe, H.: On lucky primes. J. Symb. Comput. 15, 199–209 (1994)

    Article  Google Scholar 

  72. Grayson, D.R., Stillman, M.E.: Macaulay2, A Software System for Research in Algebraic Geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  73. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin/Heidelberg/New York (2002)

    Book  MATH  Google Scholar 

  74. Greuel, G.-M., Seelisch, F., Wienand, O.: The Gröbner basis of the ideal of vanishing polynomials. J. Symb. Comput. 46, 561–570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Gruson, L., Raynaud, M.: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13, 1–89 (1971)

    Google Scholar 

  76. Gupta, S.K., Murthy, M.P.: Suslin’S Work on Linear Groups over Polynomial Rings and Serre Problem. Indian Statistical Institute Lecture Notes Series, vol. 8. Macmillan, New Delhi (1980)

    Google Scholar 

  77. Hadj Kacem, A., Yengui, I.: Dynamical Gröbner bases over Dedekind rings. J. Algebra 324, 12–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  78. Havas, G., Majewski B.S.: Extended gcd calculation. In: Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995). Congr. Numer. 111, 104–114 (1995)

    Google Scholar 

  79. Heinzer, W., Papick, I.J.: Remarks on a remark of Kaplansky. Proc. Am. Math. Soc. 105, 1–9 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  80. Huckaba, J.: Commutative Rings with Zero-Divisors. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  81. Hurwitz, A.: Ueber einen Fundamentalsatz der arithmetischen Theorie der algebraischen Größen, pp. 230–240. Nachr. kön Ges. Wiss., Göttingen (1895) [Werke, vol. 2, pp. 198–207]

    Google Scholar 

  82. Jambor, S.: Computing minimal associated primes in polynomial rings over the integers. J. Symb. Comput. 46, 1098–1104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. Joyal, A.: Spectral spaces and distibutive lattices. Not. Am. Math. Soc. 18, 393 (1971)

    Google Scholar 

  84. Joyal, A.: Le théorème de Chevalley-Tarski. Cahiers de Topologie et Géomérie Différentielle 16, 256–258 (1975)

    Google Scholar 

  85. Kapur, D., Narendran, P.: An equational approach to theoretical proving in first-order predicate calculus. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, pp. 1146–1153 (1985)

    Google Scholar 

  86. Kandry-Rody, A., Kapur, D.: Computing a Gröbner basis of a polynomial ideal over a euclidean domain. J. Symb. Comput. 6, 37–57 (1988)

    Article  Google Scholar 

  87. Kemper, G.: A Course in Commutative Algebra. Graduate Texts in Mathematics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  88. Kreuzer, M., Robbianno, L.: Computational Commutative Algebra, vol. 2. Springer, Berlin (2005)

    MATH  Google Scholar 

  89. Kronecker, L.: Zur Theorie der Formen höherer Stufen Ber, pp. 957–960. K. Akad. Wiss. Berlin (1883) [Werke 2, 417–424]

    Google Scholar 

  90. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel (1991)

    Google Scholar 

  91. Lam, T.Y.: Serre’s Conjecture. Lecture Notes in Mathematics, vol. 635. Springer, Berlin/ New York (1978)

    Google Scholar 

  92. Lam, T.Y.: Serre’s Problem on Projective Modules. Springer Monographs in Mathematics. Springer, Berlin (2006)

    Book  Google Scholar 

  93. Laubenbacher, R.C., Woodburn, C.J.: An algorithm for the Quillen-Suslin theorem for monoid rings. J. Pure Appl. Algebra 117/118, 395–429 (1997)

    Google Scholar 

  94. Laubenbacher, R.C., Woodburn, C.J.: A new algorithm for the Quillen-Suslin theorem. Beiträge Algebra Geom. 41, 23–31 (2000)

    MathSciNet  MATH  Google Scholar 

  95. Lenstra, A.K., Lenstra, Jr. H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  96. Lequain, Y., Simis, A.: Projective modules over R[X 1, , X n ], R a Prüfer domain. J. Pure Appl. Algebra 18(2), 165–171 (1980)

    Google Scholar 

  97. Logar, A., Sturmfels, B.: Algorithms for the Quillen-Suslin theorem. J. Algebra 145(1), 231–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  98. Lombardi, H.: Le contenu constructif d’un principe local-global avec une application à la structure d’un module projectif de type fini. Publications Mathématiques de Besançon. Théorie des nombres (1997)

    Google Scholar 

  99. Lombardi, H.: Relecture constructive de la théorie d’Artin-Schreier. Ann. Pure Appl. Logic 91, 59–92 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  100. Lombardi, H.: Dimension de Krull, Nullstellensätze et Évaluation dynamique. Math. Z. 242, 23–46 (2002)

    MathSciNet  MATH  Google Scholar 

  101. Lombardi, H.: Platitude, localisation et anneaux de Prüfer, une approche constructive. Publications Mathématiques de Besançon. Théorie des nombres. Années 1998–2001

    Google Scholar 

  102. Lombardi, H.: Hidden constructions in abstract algebra (1) integral dependance relations. J. Pure Appl. Algebra 167, 259–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  103. Lombardi, H.: Constructions cachées en algèbre abstraite (4) La solution du 17ème problème de Hilbert par la théorie d’Artin-Schreier. Publications Mathématiques de Besançon. Théorie des nombres. Années 1998–2001

    Google Scholar 

  104. Lombardi, H.: Constructions cachées en algèbre abstraite (5) Principe local-global de Pfister et variantes. Int. J. Commut. Rings 2(4), 157–176 (2003)

    MathSciNet  MATH  Google Scholar 

  105. Lombardi, H., Perdry, H.: The Buchberger algorithm as a tool for ideal theory of polynomial rings in constructive mathematics. In: Gröbner Bases and Applications (Proceedings of the Conference 33 Years of Gröbner Bases). Mathematical Society Lecture Notes Series, vol. 251, pp. 393–407. Cambridge University Press, London (1998)

    Google Scholar 

  106. Lombardi, H., Quitté, C.: Constructions cachées en algèbre abstraite (2) Le principe local-global. In: Fontana, M., Kabbaj, S.-E., Wiegand, S. (eds.) Commutative Ring Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 131, pp. 461–476. Marcel Dekker, New York (2002)

    Google Scholar 

  107. Lombardi, H., Quitté, C.: Seminormal rings (following Thierry Coquand). Theor. Comput. Sci. 392, 113–127 (2008)

    Article  MATH  Google Scholar 

  108. Lombardi, H., Quitté, C.: Algèbre Commutative. Méthodes Constructives. Modules projectifs de type fini. Cours et exercices. Calvage et Mounet, Paris (2011)

    MATH  Google Scholar 

  109. Lombardi, H., Quitté, C.: Commutative Algebra. Constructive Methods. Finite Projective Modules. Springer, New York (2015)

    Google Scholar 

  110. Lombardi, H., Yengui, I.: Suslin’s algorithms for reduction of unimodular rows. J. Symb. Comput. 39, 707–717 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  111. Lombardi H., Quitté C., Diaz-Toca G. M., Modules sur les anneaux commutatifs. Cours et exercices. Calvage et Mounet, 2014.

    Google Scholar 

  112. Lombardi, H., Quitté, C., Yengui, I.: Hidden constructions in abstract algebra (6) The theorem of Maroscia, Brewer and Costa. J. Pure Appl. Algebra 212, 1575–1582 (2008)

    Article  MATH  Google Scholar 

  113. Lombardi, H., Quitté, C., Yengui, I.: Un algorithme pour le calcul des syzygies sur V[X] dans le cas où V est un domaine de valuation. Commun. Algebra 42(9), 3768–3781 (2014)

    Article  MATH  Google Scholar 

  114. Lombardi, H., Schuster, P., Yengui, I.: The Gröbner ring conjecture in one variable. Math. Z. 270, 1181–1185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  115. Macaulay2. A Quillen-Suslin package. http://wiki.macaulay2.com/Macaulay2/index.php?title=Quillen-Suslin (2011)

  116. Magma (Computational Algebra Group within School of Maths and Statistics of University of Sydney). http://magma.maths.usyd.edu.au/magma (2010)

  117. Maroscia, P.: Modules projectifs sur certains anneaux de polynomes. C. R. Acad. Sci. Paris Sér. A 285, 183–185 (1977)

    MathSciNet  MATH  Google Scholar 

  118. Mialebama Bouesso, A., Sow, D.: Non commutative Gröbner bases over rings. Commun. Algebra 43(2), 541–557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  119. Mialebama Bouesso, A., Valibouze, A., Yengui, I.: Gröbner bases over \(\mathbb{Z}/p^{\alpha }\mathbb{Z}\), \(\mathbb{Z}/m\mathbb{Z}\), \((\mathbb{Z}/p^{\alpha }\mathbb{Z}) \times (\mathbb{Z}/p^{\alpha }\mathbb{Z})\), \(\mathbb{F}_{2}[a,b]/\langle a^{2} - a,b^{2} - b\rangle\), and \(\mathbb{Z}\) as special cases of dynamical Gröbner bases. Preprint (2012)

    Google Scholar 

  120. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Universitext. Springer, Heidelberg (1988)

    Book  MATH  Google Scholar 

  121. Mnif, A., Yengui, I.: An algorithm for unimodular completion over Noetherian rings. J. Algebra 316, 483–498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  122. Möller, M., Mora, T.: New constructive methods in classical ideal theory. J. Algebra 100, 138–178 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  123. Monceur, S., Yengui, I.: On the leading terms ideals of polynomial ideals over a valuation ring. J. Algebra 351, 382–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  124. Monceur, S., Yengui, I.: Suslin’s lemma for rings containing an infinite field. Colloq. Math. (in press)

    Google Scholar 

  125. Mora, T.: Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  126. Northcott, D.G.: Finite Free Resolutions. Cambridge University Press, Cambridge (1976)

    Book  MATH  Google Scholar 

  127. Norton, G.H., Salagean, A.: Strong Gröbner bases and cyclic codes over a finite-chain ring. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  128. Norton, G.H., Salagean, A.: Strong Gröbner bases for polynomials over a principal ideal ring. Bull. Aust. Math. Soc. 64, 505–528 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  129. Norton, G.H., Salagean, A.: Gröbner bases and products of coefficient rings. Bull. Aust. Math. Soc. 65, 145–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  130. Norton, G.H., Salagean, A.: Cyclic codes and minimal strong Gröbner bases over a principal ideal ring. Finite Fields Appl. 9, 237–249 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  131. Park, H.: A computational theory of Laurent polynomial rings and multidimensional FIR systems. University of Berkeley (1995)

    Google Scholar 

  132. Park, H.: Symbolic computations and signal processing. J. Symb. Comput. 37, 209–226 (2004)

    Article  MATH  Google Scholar 

  133. Park, H.: Generalizations and variations of Quillen-Suslin theorem and their applications. In: Work-shop Grb̈ner Bases in Control Theory and Signal Processing. Special Semester on Grb̈ner Bases and Related Methods 2006, University of Linz, Linz, 19 May 2006

    Google Scholar 

  134. Park, H., Woodburn, C.: An algorithmic proof of Suslin’s stability theorem for polynomial rings. J. Algebra 178, 277–298 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  135. Pauer, F.: On lucky ideals for Gröbner basis computations. J. Symb. Comput. 14, 471–482 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  136. Pauer, F.: Gröbner bases with coefficients in rings. J. Symb. Comput. 42, 1003–1011 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  137. Perdry, H.: Lazy bases: a minimalist constructive theory of Noetherian rings. MLQ Math. Log. Q. 54, 70–82 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  138. Perdry, H.: Strongly Noetherian rings and constructive ideal theory. J. Symb. Comput. 37, 511–535 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  139. Perdry, H., Schuster, P.: Noetherian orders. Math. Struct. Comput. Sci. 24(2), 29 (2014)

    MathSciNet  Google Scholar 

  140. Perdry, H., Schuster, P.: Constructing Gröbner bases for Noetherian rings. Math. Struct. Comput. Sci. 21, 111–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  141. Pola, E., Yengui, I.: A negative answer to a question about leading terms ideals of polynomial ideals. J. Pure Appl. Algebra 216, 2432–2435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  142. Pola, E., Yengui, I.: Gröbner rings. Acta Sci. Math. (Szeged) 80, 363–372 (2014)

    Google Scholar 

  143. Preira, J.-M., Sow, D., Yengui, I.: On Polly Cracker over valuation rings and \(\mathbb{Z}_{n}\). Preprint (2010)

    Google Scholar 

  144. Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  145. Rao, R.A.: The Bass-Quillen conjecture in dimension three but characteristic ≠ 2, 3 via a question of A. Suslin. Invent. Math. 93, 609–618 (1988)

    Google Scholar 

  146. Rao, R.A., Swan, R.: A regenerative property of a fibre of invertible alternating polynomial matrices (in preparation)

    Google Scholar 

  147. Raynaud, M.: Anneaux Locaux Henséliens. Lectures Notes in Mathematics, vol. 169. Springer, Berlin/Heidelberg/New York (1970)

    Google Scholar 

  148. Richman, F.: Constructive aspects of Noetherian rings. Proc. Am. Mat. Soc. 44, 436–441 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  149. Richman, F.: Nontrivial use of trivial rings. Proc. Am. Mat. Soc. 103, 1012–1014 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  150. Roitman, M.: On projective modules over polynomial rings. J. Algebra 58, 51–63 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  151. Roitman, M.: On stably extended projective modules over polynomial rings. Proc. Am. Math. Soc. 97, 585–589 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  152. Rosenberg, J.: Algebraic K-Theory and Its Applications. Graduate Texts in Mathematics. Springer, New York (1994)

    Book  MATH  Google Scholar 

  153. Sasaki, T., Takeshima, T.: A modular method for Gröbner-basis construction over \(\mathbb{Q}\) and solving system of algebraic equations. J. Inform. Process. 12, 371–379 (1989)

    MathSciNet  MATH  Google Scholar 

  154. Schreyer, F.-O.: Syzygies of canonical curves and special linear series. Math. Ann. 275(1), 105–137 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  155. Schreyer, F.-O.: A standard basis approach to Syzygies of canonical curves. J. Reine Angew. Math. 421, 83–123 (1991)

    MathSciNet  MATH  Google Scholar 

  156. Schuster, P.: Induction in algebra: a first case study. In: 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science, Proceedings LICS 2012, pp. 581–585. IEEE Computer Society Publications, Dubrovnik (June 2012)

    Google Scholar 

  157. Schuster, P.: Induction in algebra: a first case study. Log. Methods Comput. Sci. 9(3), 19 (2013)

    Article  Google Scholar 

  158. Seindeberg, A.: What is Noetherian? Rend. Sem. Mat. Fis. Milano 44, 55–61 (1974)

    Article  MathSciNet  Google Scholar 

  159. Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math. 61, 191–278 (1955)

    Article  Google Scholar 

  160. Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. Sém. Dubreil-Pisot, no. 23, Paris (1957/1958)

    Google Scholar 

  161. Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S.: Equivalence verification of polynomial datapaths with fixed-size bit-vectors using finite ring algebra. In: ICCAD ’05: Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, pp. 291–296. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  162. Simis, A., Vasconcelos, W.: Projective modules over R[X], R a valuation ring are free. Not. Am. Math. Soc. 18(5), 944 (1971)

    Google Scholar 

  163. Suslin, A.A.: Projective modules over a polynomial ring are free. Sov. Math. Dokl. 17, 1160–1164 (1976)

    MATH  Google Scholar 

  164. Suslin, A.A.: On the structure of the special linear group over polynomial rings. Math. USSR-Izv. 11, 221–238 (1977)

    Article  MATH  Google Scholar 

  165. Suslin, A.A.: On stably free modules. Mat. Sb. (N.S.), 102(144)(4), 537–550 (1977)

    Google Scholar 

  166. Swan, R.: On seminormality. J. Algebra 67, 210–229 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  167. Traverso, C.: Seminormality and the Picard group. Ann. Scuola Norm. Sup. Pisa 24, 585–595 (1970)

    MathSciNet  MATH  Google Scholar 

  168. Traverso, C.: Gröbner Trace Algorithms. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’88. Lecture Notes in Computer Science, vol. 358, pp. 125–138 (1988)

    Article  MathSciNet  Google Scholar 

  169. Traverso, C.: Hilbert functions and the Buchberger’s algorithm. J. Symb. Comput. 22, 355–376 (1997)

    Article  MathSciNet  Google Scholar 

  170. Trinks, W.: Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen. J. Number Theory 10, 475–488 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  171. Tolhuizen, L., Hollmann, H., Kalker, A.: On the realizability of Bi-orthogonal M-dimensional 2-band filter banks. IEEE Trans. Signal Process. 43, 640–648 (1995)

    Article  Google Scholar 

  172. Valibouze, A., Yengui, I.: On saturations of ideals in finitely-generated commutative rings and Gröbner rings. Preprint (2013)

    Google Scholar 

  173. Vaserstein, L.N.: K 1-theory and the congruence problem. Mat. Zametki 5, 233–244 (1969)

    MathSciNet  Google Scholar 

  174. Vaserstein, L.N.: Operations on orbits of unimodular vectors. J. Algebra 100, 456–461 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  175. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  176. Wienand, O.: Algorithms for symbolic computation and their applications. Ph.D. thesis, Kaiserslautern (2011)

    Google Scholar 

  177. Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symb. Comput. 6, 287–304 (1987)

    Article  Google Scholar 

  178. Yengui, I.: An algorithm for the divisors of monic polynomials over a commutative ring. Math. Nachr. 260, 1–7 (2003)

    Article  MathSciNet  Google Scholar 

  179. Yengui, I.: Making the use of maximal ideals constructive. Theor. Comput. Sci. 392, 174–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  180. Yengui, I.: Dynamical Gröbner bases. J. Algebra 301, 447–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  181. Yengui, I.: The Hermite ring conjecture in dimension one. J. Algebra 320, 437–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  182. Yengui, I.: Corrigendum to dynamical Gröbner bases [J. Algebra 301(2), 447–458 (2006)] and to Dynamical Gröbner bases over Dedekind rings [J. Algebra 324(1), 12–24 (2010)]. J. Algebra 339, 370–375 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  183. Yengui, I.: Stably free modules over R[X] of rank \(>\dim \mathbf{R}\) are free. Math. Comput. 80, 1093–1098 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  184. Yengui, I.: The Gröbner ring conjecture in the lexicographic order case. Math. Z. 276, 261–265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  185. Youla, D.C., Pickel, P.F.: The Quillen-Suslin theorem and the structure of n-dimentional elementary polynomial matrices. IEEE Trans. Circ. Syst. 31, 513–518 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yengui, I. (2015). Introduction. In: Constructive Commutative Algebra. Lecture Notes in Mathematics, vol 2138. Springer, Cham. https://doi.org/10.1007/978-3-319-19494-3_1

Download citation

Publish with us

Policies and ethics