Skip to main content

Design and Development of an Experimental Claw-Grip, Forefinger Simulator. Part I: Kinematics

  • Chapter
  • First Online:
Applications of Computational Tools in Biosciences and Medical Engineering

Abstract

The evolution achieved in the development of robotic hands in recent years solves a few problems. It has allowed to copy the aesthetic and mechanical behavior of the healthy limb, yet still limited to applications to test prototypes. On the other hand, some disadvantages are: the equipment used to generate these devices is too large, heavy, noisy and difficult to mount on reduced space just as the joint of the hand. In this work, the main aim is to develop the movement of two fingers, the thumb and forefinger, since this carry out the most of the important functions of the hand and since their movement is at least as complex as that of the other three fingers. To be able to reduce the mechanism of action of the finger, the simplified kinematics was used, being based on the equations of Denavit & Hartenberg which eliminate the redundancies in the movement parameters. After having solved the equations using a program made in Math Lab , the solutions of kinematic parameters, such as position, speed and others were obtained. There tools used to design and build the hand such computational CAD/CAE and 3D models printer will be mentioned. It is important to mention the tools that were used to design and to build the hand, such as computational software CAD/CAE software and 3D models printer. Finally, the results obtained were satisfactory and the prototype was built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Rukah, Y., Al-Kofahi, O.: Assessment of the effect of landfill leachate on ground-water quality-a case study. El-Akader Landfill Site-North Jordan. J. Arid Environ. 49–3, 615–630 (2001)

    Article  Google Scholar 

  2. Aguilar L (2011a) Optimización de la geometría de una prótesis de miembro superior. Thesis to obtain a title of Cont and Autom Eng. Instituto Politécnico Nacional, México

    Google Scholar 

  3. Aguilar, L., Torres, C., Ángeles, B., Molina, A., Hernández, R.: Influencia del Ciclo de Marcha sobre Prótesis de rodilla. Estado del Arte. Congreso de Investigación en Energías Renovables Universidad Nacional Autónoma de México (2011b)

    Google Scholar 

  4. Barrientos, A., et al.: Fundamentos de Robótica. McGraw Hill, new York (1997)

    Google Scholar 

  5. Bebionic: Bebionic product brochure, RSLSTEEPER, Editor (2011)

    Google Scholar 

  6. Birglen, T., Laliberté, T., Gosselin, C.M.: Underactuated Robotic Hands. Springer, New York (2008)

    Google Scholar 

  7. Bowker, H., Michael, J.: Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles. American Academy of Orthopedic Surgeons, Rosemont, IL (2002)

    Google Scholar 

  8. Butterfa, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: Next generation of a dextrous robot hand. German Aerospace Research Center (DLR) Institute of Robotics and Mechatronics, Wessling, Germany (2001)

    Google Scholar 

  9. Caffaz, G.C.: The design and development of the DIST-hand Dextrous Gripper. In: IEEE International Conference on Robotics and Automation (1998)

    Google Scholar 

  10. Ceres, R., Pons, J.L., Calderón, L., Moreno, J.: La robótica en la discapacidad, desarrollo de la prótesis diestra de extremidad inferior MANUS-HAND. Robótica Iberoamericana de Automática e Informática Industrial 5, 60–68 (2008)

    Article  Google Scholar 

  11. Charnpratheep, K., Zhou, Q., Garner, B.: Preliminary landfill site screening using fuzzy geographical information systems. Waste Manage. Res. 15–2, 197–215 (1997)

    Article  Google Scholar 

  12. Christine, A., Brent, K., Steven, J.: Environmental justice and toxic exposure: toward a spatial model of physical health and psychological well-being. Soc. Sci. Res. 36–1, 48–67 (2007)

    Google Scholar 

  13. Chuang, P.T.: Combining the analytic hierarchy process and quality function deployment for a location decision from a requirement perspective. Int. J. Adv. Manuf. Tech. 18, 842–849 (2001)

    Article  Google Scholar 

  14. Church, R.: Geographical information systems and location science. Comp. Oper. Res. 29–6, 541–562 (2002)

    Article  Google Scholar 

  15. Craig, J.J.: Robótica. Tercera ed. Pearson Educación, México (2006)

    Google Scholar 

  16. EPA, Title 40 Subchapter I-Solid Waste: 258 Criteria for Municipal Solid Waste Landfills. Environmental Protection Agency, USA (2000)

    Google Scholar 

  17. Fukaya, N., Shigeki, T., Tamim, A., Rüdiger, D.: Design of the TUAT/Kalsruhe humanoide hand. In: IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  18. González, L.E.: Diseño de mecanismos utilizando algoritmos genéticos con aplicación en prótesis para miembro inferior. Thesis to obtain of Ph.D degree Instituto Politécnico Nacional (2010)

    Google Scholar 

  19. Grosch, P., Suárez, R.: Mano Mecánica MA-I. Instituto de Organización y Control de Sistemas Industriales UPC, Barcelona, España (2000)

    Google Scholar 

  20. i-limb Hand: Get a Grip on Functionality (2008). http://www.touchbionics.com/. Accessed 02 Sept 2011

  21. ISO 7250-1:2008: Definiciones de las medidas básicas del cuerpo humano para el diseño tecnológico: Definiciones de las medidas del cuerpo y referencias. Comité de Prevención y Medios de Protección Personal y Colectiva en el Trabajo (2008)

    Google Scholar 

  22. Kutz, M.: Standard Handbook of Biomedical Engineering and Design. McGraw Hill, New York (2003)

    Google Scholar 

  23. Kyberd, P.J., Clawson, A., Jones, B.: The use of underactuation in prosthetic grasping. Mech. Sci. Open Access 2, 27–32 (2011)

    Google Scholar 

  24. Lajud, H.C., Pérez, J.G.H.: Diseño de un sistema articulado emulando el movimiento de una mano. Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca Morelos México (2006)

    Google Scholar 

  25. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control Theory and Practice. Marcel Dekker Inc., New York (2004)

    Google Scholar 

  26. Marreno, R.C.M., Cunillera, M.P.: Biomecánica clínica del aparato locomotor. ed. Masson (1999)

    Google Scholar 

  27. Mondelo, P.R., Blasco, J.E.G., Barrau, P.: Ergonomía 3: Diseño de Puestos de trabajo. Mutua Universal, Barcelona (1999)

    Google Scholar 

  28. Nasser, S., Rincon, M.D., Rodríguez, R.: Design of a low cost, highly functional, multi-fingered hand prosthesis. In: 4th International Latin American and Caribbean Conference for Engineering and Technology (LACCEI). Puerto Rico (2006)

    Google Scholar 

  29. Nordin, M., Frankel, V.H.: Biomecánica básica del sistema musculoesquelético. McGraw Hill, México (2004)

    Google Scholar 

  30. Santos, C.H., Mejía, C.F.M.: Diseño de un sistema emulando el movimiento articulado de una mano, brazo y antebrazo. Departamento de Ingeniería Mecatrónica, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca Morelos, México (2007)

    Google Scholar 

  31. Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight anthropomorphic hand. In: IEEE International Conference on Robotics and Automation. Seoul, Korea, pp 2437–2441 (2000)

    Google Scholar 

  32. Shigley, J.E., Mischke, C.R.: Teoría de máquinas y mecanismos. McGraw Hill, México (2001)

    Google Scholar 

  33. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2008)

    Google Scholar 

  34. Tortora, G.J., Grabowski, S.R.: Principios de anatomía y fisiología. 9 ed. Oxford University Press, Oxford (2003)

    Google Scholar 

  35. Velázquez, A.T.: Caracterización cinemática e implementación de una mano robótica multiarticulada. Thesis to obtain Ph.D. degree. Instituto Politécnico Nacional, México (2008)

    Google Scholar 

  36. Velázquez, A.T., et al.: Rango de movilidad y Función descriptiva del dedo índice. Científica 11, 177–188 (2007)

    Google Scholar 

  37. Yang, J., Pitarch, E.P., Malek, K.A., Patrick, A., Lindkvist, L.: A multi-fingered hand prosthesis. Mech Mach Theory 39, 555–581 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors fully appreciate the support granted for this research by the Instituto Politécnico Nacional, and ICyTDF as well as the Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez, R. et al. (2015). Design and Development of an Experimental Claw-Grip, Forefinger Simulator. Part I: Kinematics. In: Öchsner, A., Altenbach, H. (eds) Applications of Computational Tools in Biosciences and Medical Engineering. Advanced Structured Materials, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19470-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19470-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19469-1

  • Online ISBN: 978-3-319-19470-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics