Skip to main content

Numerical Modelling of Young’s Modulus of Single-Layered Cubic Zirconia Nanosheets

  • Chapter
  • First Online:
Mechanical and Materials Engineering of Modern Structure and Component Design

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 70))

Abstract

It has been established that zirconia nanosheets have many potential applications when compared with other materials possessing similar properties; however, the utilization of most of their potentials is constrained due to minimal data currently available on its mechanical properties. In this paper, the Young’s modulus of single-layered zirconia nanosheets is predicted based on the concept of the finite element analysis. The nanosheet was modelled structurally as a hexagonal network of bonds connected by zirconium and oxygen atoms. Zirconia nanosheets with different dimensions and chirality were simulated with bonds between the atoms regarded as beam elements. The Young’s modulus of the nanosheet was determined based on the combination of molecular mechanics and structural mechanics. The results obtained from the modeling indicates that the technique used is a viable tool for predicting mechanical properties of cubic zirconia nanosheets at a lower computational cost when compared to complex ab initio molecular dynamics and sophisticated experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari R, Ajori S, Motevalli B (2012) Super Micro 51(2):274–289

    Article  MATH  Google Scholar 

  2. Davar F, Hassankhani A, Loghman-Estarki MR (2013) Ceram Int 39(3):2933–2941

    Article  MATH  Google Scholar 

  3. Muhammad ID, Awang M, Mamat O (2014) Adv Mater Res. 845:387–391

    Article  MATH  Google Scholar 

  4. Cook J, Hamburg D, Kaiser W, Logothetis E (1983) Engine dynamometer study of the transient response of ZrO2 and TiO2 exhaust gas oxygen sensors. SAE Technical Paper 830985

    Google Scholar 

  5. Möbius HH (1997) J solid state electron 1(1):2–16

    Article  Google Scholar 

  6. Yamamoto N, Sato S, Takahashi R, Inui K (2006) J Mole Catal A Chem 243(1):52–59

    Article  Google Scholar 

  7. Ahmed A, El-Hakam S, Samra S, El-Khouly A, Khder A (2008) Colloids Surf A Physicochem Enzi Aspects 317(1):62–70

    Google Scholar 

  8. Takenaka S, Uwai S, Ida S, Matsune H, Kishida M (2013) Chem Lett 42(10):1188–1190

    Article  Google Scholar 

  9. Bandura AV, Evarestov RA (2012) Comp Mater Sci 65:395–405

    Article  Google Scholar 

  10. Mohammadpour E, Awang M (2012) Appl Phys A 106(3):581–588

    Article  Google Scholar 

  11. Caravaca M, Mino J, Pérez V, Casali R, Ponce C (2009) J Phys Condens Matter 21(1):015501

    Google Scholar 

  12. Xia X, Oldman R, Catlow R (2009) Chem Mater 21(15):3576–3585

    Article  Google Scholar 

  13. Gennard S, Cora F, Catlow CRA (1999) J Phys Chem B 103(46):10158–10170

    Article  Google Scholar 

  14. Nadeem M, Akhtar M, Shaheen R, Haque M, Khan A (2001) J Mater Sci Technol 17(6):638–642

    Google Scholar 

  15. Cai J, Anastassakis E (1995) Phys Rev B 51(11):6821

    Article  Google Scholar 

  16. Stapper G, Bernasconi M, Nicoloso N, Parrinello M (1999) Phys Rev B 59(2):797

    Article  Google Scholar 

  17. Meo M, Rossi M (2006) Comp Sci Technol 66(11):1597–1605

    Article  Google Scholar 

  18. Accelrys Software Inc., (2012) Materials studio. Accelrys Software Inc., San Diego

    Google Scholar 

  19. Ansari R, Rouhi S, Mirnezhad M, Sadeghiyeh F (2013) Appl Phys A 112(3):767–774

    Article  Google Scholar 

  20. Lewis G, Catlow C (1985) J Phys C Solid State Phys 18(6):1149–1155

    Article  Google Scholar 

  21. Wang C (2009) Multiscale modeling and simulation of Nanocrystalline zirconium oxide. PhD Thesis, Mechanical Engineering Department, University of Nebraska

    Google Scholar 

  22. Muhammad ID, Awang M (2014) Appl Mech Mater 446:151–157

    Google Scholar 

  23. Ansari R, Rouhi S (2010) Physica E 43(1):58–69

    Article  Google Scholar 

  24. Chang Y, Wang H, Zhu Q, Luo P, Dong S (2013) J Adv Ceram 2(1):21–25

    Article  Google Scholar 

  25. Lee J, Yoon D, Cheong H (2012) Nano Lett 12(9):4444–4448

    Article  Google Scholar 

  26. Castellanos‐Gomez A, Poot M, Steele GA, van der Zant HSJ, Agraït N, Rubio‐Bollinger G (2012) Adv Mater 24(6):772–775

    Google Scholar 

  27. Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Nanotechnology 22(50):505702

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the supports provided by Universiti Teknologi PETRONAS and Malaysian Ministry of Higher Education (MOHE) through the Long Term Research Grant Scheme (LRGS) for One Baja Research Programme (Project 6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Dauda Muhammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muhammad, I.D., Awang, M., Seng, L.K. (2015). Numerical Modelling of Young’s Modulus of Single-Layered Cubic Zirconia Nanosheets. In: Öchsner, A., Altenbach, H. (eds) Mechanical and Materials Engineering of Modern Structure and Component Design. Advanced Structured Materials, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-319-19443-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19443-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19442-4

  • Online ISBN: 978-3-319-19443-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics