Skip to main content

Thermo-Electro-Mechanical Properties of Interpenetrating Phase Composites with Periodic Architectured Reinforcements

  • Chapter
  • First Online:
From Creep Damage Mechanics to Homogenization Methods

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 64))

Abstract

In this study, the multifunctional properties (thermal, electric, and mechanical properties) of a new type of three-dimensional (3D) periodic architectured interpenetrating phase composites (IPCs) are investigated computationally. These new IPCs are created using two interconnected, bicontinuous, and intertwined material phases. The inner reinforcing phase takes the shape of the 3D morphology (architecture) of the mathematically-known triply periodic minimal surfaces (TPMS). The TPMS reinforcements are 3D solid sheet networks with a certain volume fraction and architecture. The interconnectivity of the proposed TPMS-based IPCs provide a novel way of creating multifunctional composites with superior properties. In this study, the effect of six well-known TPMS architectures of various volume fractions on the thermal/electrical conductivity and Young’s modulus of the IPCs is investigated using the finite element analysis of a unit cell with periodic boundary conditions. The contrast effect (high and low) between the conductivities and Young’s modulus of the two phases is also investigated. The calculated effective properties are compared with some analytical bounds. The proposed TPMS-IPCs possess effective properties close to the upper Hashin-Shtrikman bounds. It is also shown that the effect of TPMS architecture decreases as the contrast decreases. Finally, the manufacturability of these new TPMS-IPCs is demonstrated through using 3D printing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abueidda DW, Dalaq AS, Al-Rub RKA, Younes HA (2015) Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements. Int J Mech Sci 92:80–89

    Article  Google Scholar 

  • Ashby MF, Shercliff H, Cebon D (2013) Materials: engineering, science. Processing and design. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Brakke K (2014) Triply periodic minimal surfaces. Susquehanna University, Selinsgrove, PA. http://www.susqu.edu/brakke/evolver/examples/periodic/periodic.html

  • Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66

    Article  Google Scholar 

  • Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14):4130–4146

    Article  MATH  Google Scholar 

  • Chen HY, Kwon Y, Thornton K (2009) Multifunctionality of three-dimensional self-assembled composite structure. Scripta Materialia 61(1):52–55

    Article  Google Scholar 

  • Cheng F, Kim SM, Reddy JN, Abu Al-Rub RK (2014) Modeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolution. Int J Plast 61(9):94–111

    Article  Google Scholar 

  • Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3d biodegradable scaffolds for bone ingrowth. J Biomed Mater Res Part B Appl Biomater 64B:65–69

    Article  Google Scholar 

  • Dalaq AS, Ranganathan SI, Ostoja-Starzewski M (2013) Scaling function in conductivity of planar random checkerboards. Comput Mater Sci 79:252–261

    Article  Google Scholar 

  • Gandy PJF, Klinowski J (2000) Exact computation of the triply periodic g (‘gyroid’) minimal surface. Chem Phys Lett 321(5):363–371

    Article  Google Scholar 

  • Giraud A, Gruescu C, Do DP, Homand F, Kondo D (2007) Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoïdal inhomogeneities. Int J Solids Struct 44(9):2627–2647

    Article  MATH  Google Scholar 

  • Góżdż WT, Hołyst R (1996) Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsions. Phys Rev E 54:5012–5027

    Article  Google Scholar 

  • Jiang M, Alzebdeh K, Jasiuk I, Ostoja-Starzewski M (2001) Scale and boundary conditions effects in elastic properties of random composites. Acta Mechanica 148(1–4):63–78

    Article  MATH  Google Scholar 

  • Jiang M, Jasiuk I, Ostoja-Starzewski M (2002) Apparent thermal conductivity of periodic two-dimensional composites. Comput Mater Sci 25(3):329–338

    Article  Google Scholar 

  • Jung Y, Torquato S (2005) Fluid permeabilities of triply periodic minimal surfaces. Phys Rev E Stat Nonlinear Soft Matter Phys 72(5 Pt. 2):056,319

    Google Scholar 

  • Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679

    Article  MATH  Google Scholar 

  • Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29):6875–6882

    Article  Google Scholar 

  • Kassner ME, Gumbsch P, Kim KS, Knauss W, Kubin L, Langer J, Larson BC, Mahadevan L, Majumdar A, Torquato S, van Swol F, Nemat-Nasser S, Suo Z, Bao G, Barbour JC, Brinson LC, Espinosa H, Gao H, Granick S (2005) New directions in mechanics. Mech Mater 37(2–3):231–259

    Article  Google Scholar 

  • Kushch VI, Chernobai VS (2014) Transverse conductivity and longitudinal shear of elliptic fiber composite with imperfect interface. Int J Solids Struct 51(13):2529–2538

    Article  Google Scholar 

  • Lord EA (1997) Triply-periodic balance surfaces. Coll Surf A: Physicochem Eng Aspects 129–130(11):279–295

    Article  Google Scholar 

  • Lutz MP, Zimmerman RW (2005) Effect of an inhomogeneous interphase zone on the bulk modulus and conductivity of a particulate composite. Int J Solids Struct 42(2):429–437

    Article  MATH  Google Scholar 

  • Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1):109–143

    Article  MATH  MathSciNet  Google Scholar 

  • Milton GW (1981) Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl Phys A Solids Surf 26:125–130

    Article  Google Scholar 

  • Muliana AH (2009) A micromechanical model for predicting thermal properties and thermo-viscoelastic responses of functionally graded materials. Int J Solids Struct 46(9):1911–1924

    Article  MATH  Google Scholar 

  • Schaedler T, Jacobsen A, Torrents A, Sorensen A, Lian J, Greer J, Valdevit L, Carter W (2011) Ultralight metallic microlattices. Science 334(6058):962–965

    Article  Google Scholar 

  • Schröder-Turk GE, Wickham S, Averdunk H, Brink F, Fitz Gerald JD, Poladian L, Large MCJ, Hyde ST (2011) The chiral structure of porous chitin within the wing-scales of Callophrys rubi. J Struct Biol 174(2):290–295

    Article  Google Scholar 

  • Torquato S, Donev A (2004) Minimal surfaces and multifunctionality. Proc R Soc Lond A 460(2047):1849–1856

    Article  MATH  MathSciNet  Google Scholar 

  • Torquato S, Hyun S, Donev A (2003) Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. J Appl Phys 94(9):5748–5755

    Article  Google Scholar 

  • Wegner L, Gibson L (2000) The mechanical behaviour of interpenetrating phase composites—i: modelling. Int J Mech Sci 42(5):925–942

    Article  MATH  Google Scholar 

  • Yoo D (2011) Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32(5):7741–7754

    Article  Google Scholar 

  • Yoo D (2012) Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions. Med Eng Phys 34(5):625–639

    Article  Google Scholar 

  • Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA, Kucheyev SO, Fang NX, Spadaccini CM (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344(6190):1373–1377

    Article  Google Scholar 

  • Zohdi TI, Wriggers P (2008) Introduction to computational micromechanics. Lecture notes in applied and computational mechanics, vol 20. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid K. Abu Al-Rub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abu Al-Rub, R.K., Abueidda, D.W., Dalaq, A.S. (2015). Thermo-Electro-Mechanical Properties of Interpenetrating Phase Composites with Periodic Architectured Reinforcements. In: Altenbach, H., Matsuda, T., Okumura, D. (eds) From Creep Damage Mechanics to Homogenization Methods. Advanced Structured Materials, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-19440-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19440-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19439-4

  • Online ISBN: 978-3-319-19440-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics