Advertisement

Egalitarian Processor Sharing System with Demands of Random Space Requirement

  • Oleg Tikhonenko
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 522)

Abstract

We investigate processor sharing systems with demands having some random space requirements (volumes) and demands lengths depending on their volumes. For such systems we determine non-stationary total demands capacity distribution in terms of Laplace and Laplace-Stieltjes transforms.

Keywords

Queueing system Egalitarian processor sharing system Demand space requirement Total demands capacity Laplace transform Laplace-Stieltjes transform 

References

  1. 1.
    Berger, A.W., Kogan, Y.: Dimensioning bandwidth for elastic traffic in high-speed data networks. IEEE/ACM Trans. Netw. 8(5), 643–654 (2000)CrossRefGoogle Scholar
  2. 2.
    Bonald, T., Massouli, L.: Impact of fairness on Internet performance. In: Proceeedings of SIGMETRICS 2001, pp. 82–91 (2001)Google Scholar
  3. 3.
    Bonald, T., May, M., Bolot, J.-C.: Analytic evaluation of RED performance. In: Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1415–1424 (2000)Google Scholar
  4. 4.
    Chen, N., Jordan, S.: Throughput in processor-sharing queues. IEEE Trans. Autom. Contr. 52(2), 299–305 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Coffman, J.E.G., Muntz, R.R., Trotter, H.: Waiting time distributions for processor-sharing systems. J. ACM 17(1), 123–130 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Morrison, J.A.: Asymptotic analysis of the waiting-time distribution for a large closed processor-sharing system. SIAM J. Appl. Math. 46, 140–170 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Knessl, C.: On the sojourn time distribution in a finite capacity processor shared queue. J. ACM 40(5), 1238–1301 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ott, T.J.: The sojourn-time distribution in the \(M/G/1\) queue with processor sharing. J. Appl. Prob. 21, 360–378 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Schassberger, R.: A new approach to the \(M/G/1\) processor-sharing queue. Adv. Appl. Prob. 16, 202–213 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Yashkov, S.F.: Analysis of Computer Queues. Radio i Svyaz, Moscow (1989). [in Russian]Google Scholar
  11. 11.
    Van den Berg, J.L., Boxma, O.: The \(M/G/1\) queue with processor sharing and its relation to a feedback queue. Queueing Syst. 9, 365–402 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Yashkov, S.F.: A derivation of response time distribution for a \(M/G/1\) processor sharing queue. Probl. Contr. Info. Theor. 12, 133–148 (1983)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Yashkov, S.F., Yashkova, A.S.: Processor sharing: a survey of the mathematical theory. Autom. Remote Control. 68(9), 1662–1731 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Tikhonenko, O.M.: Queuing systems with processor sharing and limited resources. Autom. Remote Control. 71(5), 803–815 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Sengupta, B.: The spatial requirement of M/G/1 queue or: how to design for buffer space. In: Baccelli, F., Fayolle, G. (eds.) Modeling and Performance Evaluation Methodology. LNCIS, vol. 60, pp. 545–562. Springer, Berlin (1984)CrossRefGoogle Scholar
  16. 16.
    Lakatos, L., Szeidl, L., Telek, M.: Introduction to Queueing Systems with Telecommunication Applications. Springer, New York (2010)Google Scholar
  17. 17.
    Tikhonenko, O.M.: Queueing Models in Information Systems. Universitetskoe, Minsk (1990). [in Russian]zbMATHGoogle Scholar
  18. 18.
    Tikhonenko, O.: Computer Systems Probability Analysis. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2006). [in Polish]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of MathematicsCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations