SysML-Based Modeling of Token Passing Paradigm in Distributed Control Systems

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 522)

Abstract

Distributed control systems are often used in many branches of industry and frequently replace standalone controllers. However, their operation is more complex and include aspects of communication between various devices. To operate correctly, it is crucial to ensure that timeliness of communication is satisfied. In this paper, the approach to modeling of the token passing paradigm, as well as the multi-master communication with token exchange has been presented. The proposed models are based on a few kinds of SysML diagrams, namely Block Definition, Internal Block, State Machine, and Sequence Diagrams. The paper presents a set of dedicating modeling rules together with their detailed explanation.

Keywords

Control systems Communication Modeling Token passing 

References

  1. 1.
    Silva, M., Pereira, F., Soares, F., Leao, C., Machado, J., Carvalho, V.: An overview of industrial communication networks. In: Flores, P., Viadero, F. (eds.) New Trends in Mechanism and Machine Science. Mechanisms and Machine Science, vol. 24, pp. 933–940. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  2. 2.
    Stój, J.: Real-time communication network concept based on frequency division multiplexing. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 247–260. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Gaj, P., Jasperneite, J., Felser, M.: Computer communication within industrial distributed environment - a survey. IEEE Trans. Ind. Inf. 9(1), 182–189 (2013)CrossRefGoogle Scholar
  4. 4.
    Kwiecień, A., Sidzina, M., Maćkowski, M.: The concept of using multi-protocol nodes in real-time distributed systems for increasing communication reliability. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 177–188. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Thomesse, J.P.: Fieldbus technology in industrial automation. Proc. IEEE 93(6), 1073–1101 (2005)CrossRefGoogle Scholar
  6. 6.
    IEC 61158 Standard: Industrial Communication Networks - Fieldbus Specifications (2007)Google Scholar
  7. 7.
    Jestratjew, A., Kwiecień, A.: Using HTTP as field network transfer protocol. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 306–313. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Jestratjew, A., Kwiecien, A.: Performance of HTTP protocol in networked control systems. IEEE Trans. Ind. Inf. 9(1), 271–276 (2013)CrossRefGoogle Scholar
  9. 9.
    OMG: OMG Systems Modeling Language, V1.3 (2012)Google Scholar
  10. 10.
    OMG: OMG Unified Modeling Language, Infrastructure, V2.4.1 (2011)Google Scholar
  11. 11.
    Jamro, M., Rzońca, D., Trybus, B.: Communication performance tests in distributed control systems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 200–209. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Jamro, M., Rzonca, D.: Measuring, monitoring, and analysis of communication transactions performance in distributed control system. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 147–156. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Jamro, M., Trybus, B.: An approach to SysML modeling of IEC 61131–3 control software. In: 2013 18th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 217–222 (2013)Google Scholar
  14. 14.
    Jamro, M.: Automatic generation of implementation in SysML-based model-driven development for IEC 61131–3 control software. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 468–473 (2014)Google Scholar
  15. 15.
    Jamro, M.: SysML modeling of POU-oriented unit tests for IEC 61131–3 control software. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 82–87 (2014)Google Scholar
  16. 16.
    Jamro, M.: Development and execution of POU-oiented performance tests for IEC 61131-3 control software. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 91–102. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  17. 17.
    Jamro, M., Rzonca, D., Sadolewski, J., Stec, A., Swider, Z., Trybus, B., Trybus, L.: CPDev engineering environment for modeling, implementation, testing, and visualization of control software. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 81–90. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  18. 18.
    Hastbacka, D., Vepsalainen, T., Kuikka, S.: Model-driven development of industrial process control applications. J. Syst. Softw. 84(7), 1100–1113 (2011)CrossRefGoogle Scholar
  19. 19.
    OMG: MDA Specifications. OMG (2014)Google Scholar
  20. 20.
    Azmoodeh, M., Georgalas, N., Fisher, S.: Model-driven systems development and integration environment. BT Technol. J. 23(3), 96–110 (2005)CrossRefGoogle Scholar
  21. 21.
    Marcos, M., Estevez, E., Iriondo, N., Orive, D.: Analysis and validation of IEC 61131–3 applications using a MDE approach. In: 2010 IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2010)Google Scholar
  22. 22.
    Saifan, A., Dingel, J.: A survey of using model-based testing to improve quality attributes in distributed systems. In: Elleithy, K. (ed.) Advanced Techniques in Computing Sciences and Software Engineering, pp. 283–288. Springer, Netherlands (2010)CrossRefGoogle Scholar
  23. 23.
    Gniewek, L.: Sequential control algorithm in the form of Fuzzy interpreted petri net. IEEE Trans. Syst. Man Cybern.: Syst. 43(2), 451–459 (2013)CrossRefGoogle Scholar
  24. 24.
    Olejnik, R.: Modelling of half-duplex radio access for hopemesh experimental WMN using petri nets. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 108–117. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  25. 25.
    Wenger, M., Zoitl, A., Froschauer, R., Rooker, M., Ebenhofer, G., Strasser, T.: Model-driven engineering of networked industrial automation systems. In: 8th IEEE International Conference on Industrial Informatics (INDIN) 2010, pp. 902–907 (2010)Google Scholar
  26. 26.
    Schimmel, A., Zoitl, A., Froschauer, R., Rooker, M., Ebenhofer, G.: Model-driven communication routing in industrial automation and control systems. In: 2010 8th IEEE International Conference on Industrial Informatics (INDIN), pp. 896–901 (2010)Google Scholar
  27. 27.
    Thramboulidis, K., Perdikis, D., Kantas, S.: Model driven development of distributed control applications. Int. J. Adv. Manuf. Technol. 33(3–4), 233–242 (2007)CrossRefGoogle Scholar
  28. 28.
    Zaeh, M., Poernbacher, C.: Model-driven development of PLC software for machine tools. Prod. Eng. 2(1), 39–46 (2008)CrossRefGoogle Scholar
  29. 29.
    Zhou, Z., Tang, B., Xu, C.: Design of distributed industrial monitoring system based on virtual token ring. In: 2nd IEEE Conference on Industrial Electronics and Applications, 2007, ICIEA 2007, pp. 598–603, May 2007Google Scholar
  30. 30.
    Tovar, E., Vasques, F.: Real-time fieldbus communications using Profibus networks. IEEE Trans. Ind. Electron. 46(6), 1241–1251 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer and Control EngineeringRzeszow University of TechnologyRzeszowPoland

Personalised recommendations