Skip to main content

Electric Field Effects in Chemical Patterns

  • Chapter
  • First Online:
Bottom-Up Self-Organization in Supramolecular Soft Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 217))

Abstract

Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in traveling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. Their behavior can be controlled by applying external electrical signals, upon which these propagating waves react. We apply such electric fields to the excitable Belousov-Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. Recently, we have investigated electric field effects in the BZ reaction dissolved in a sodium-bis (2-ethylhexyl) sulfosuccinate (AOT) water-in-oil microemulsion. A drift of complex patterns following nonlinear rules can be observed. We discuss the assumption that this system can act as a model for long range communication between neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.T. Winfree, When Time Breaks Down (Princeton University Press, New Jersey, 1987)

    Google Scholar 

  2. J.D. Murray, Mathematical Biology (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  3. H. Meinhard, The Algorithmic Beauty of Seashells (Springer, Berlin, 2009)

    Book  Google Scholar 

  4. P. Ortoleva, Geochemical Self-Organization, Oxford Monographs on Geology and Geophysics (Oxford University Press, New York, 1993)

    Google Scholar 

  5. J.M. Davidenko, A.V. Pertsov, R. Salomonsz, W. Baxter, J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992)

    Article  ADS  Google Scholar 

  6. J.D. Lechleiter, D.E. Clapham, Molecular mechanisms of intracellular Calcium excitability in X. leavis oocytes. Cell 69, 283–294 (1992)

    Article  Google Scholar 

  7. M.D. Graham, I.G. Kevrekidis, K. Asakura, J. Lauterbach, K. Krischer, H.-H. Rotermund, G. Ertl, Effects of boundaries on pattern formation: catalytic oxidation of CO on platinum. Science 264, 80–82 (1994)

    Google Scholar 

  8. M.A. Dahlem, R. Engelmann, S. Löwel, S.C. Müller, Does the migraine aura reflect cortical organization? Eur. J. Neurobiol. 12, 767–770 (2000)

    Google Scholar 

  9. R. Kapral, K. Showalter (eds.), Chemical Waves and Patterns (Kluwer Academic Press, Dordrecht, 1995)

    Google Scholar 

  10. G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley-Interscience, New York, 1977). ISBN 0-471-02401-5

    MATH  Google Scholar 

  11. R.J. Field, M. Burger (eds.), Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985)

    Google Scholar 

  12. J.J. Tyson, The Belousov-Zhabotinskii Reaction, Lecture Notes in Biomath 10 (Springer, New York, 1976)

    Google Scholar 

  13. O. Steinbock and S. C. Müller, in Handbook of Chaos Control, ed. by H. G. Schuster. Control of spiral waves in excitable media by external perturbation (Wiley-VCH, Weinheim, New York, 1999) pp. 591–614

    Google Scholar 

  14. R. Feeney, S. Schmidt, P. Ortoleva, Experiments on electric field-BZ chemical wave interaction: Annihilation and the crescent wave. Phys. D 2, 536–544 (1981)

    Article  MathSciNet  Google Scholar 

  15. H. Ševčíková, M. Marek, Chemical front waves in an electric field. Phys. D 13, 379 (1984)

    Article  Google Scholar 

  16. O. Steinbock, J. Schütze, S.C. Müller, Electric-field-induced drift and deformation of spiral waves in an excitable medium. Phys. Rev. Lett. 68, 248–251 (1992)

    Article  ADS  Google Scholar 

  17. K.I. Agladze, P. DeKepper, Influence of electric field on rotating spiral waves in the Belousov-Zhabotinskii reaction. J. Phys. Chem. 96, 5239 (1992)

    Article  Google Scholar 

  18. H. Ševčíková, M. Marek, S.C. Müller, The reversal and splitting of waves in an excitable medium caused by an electrical field. Science 257, 951–954 (1992)

    Article  ADS  Google Scholar 

  19. H. Ševčíková, I. Schreiber, M. Marek, Dynamics of oxidation Belousov-Zhabotinsky waves in an electric field. J. Phys. Chem. 100, 19153 (1996)

    Article  Google Scholar 

  20. B. Schmidt, P. DeKepper, S.C. Müller, Destabilization of turing structures by electric fields. Phys. Rev. Lett. 90(118302), 1–4 (2003)

    Google Scholar 

  21. A. Münster, Simulation of stationary chemical patterns and waves in ionic reactions. Discrete Continuous Dyn. Syst. Ser. B 2, 1 (2002)

    Google Scholar 

  22. U. Storb, C.R. Neto, M. Bär, S.C. Müller, A tomographic study of desynchronization and complex dynamics of scroll waves in an excitable chemical reaction with a gradient. Phys. Chem. Chem. Phys. 5, 2344–2353 (2003)

    Article  Google Scholar 

  23. W. Jahnke, C. Henze, A.T. Winfree, Chemical vortex dynamics in three-dimensional excitable media. Nature 336, 662 (1988)

    Article  ADS  Google Scholar 

  24. C. Luengviriya, U. Storb, M.J.B. Hauser, S.C. Müller, An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen-free conditions. Phys. Chem. Chem. Phys. 8, 1425 (2006)

    Article  Google Scholar 

  25. A.M. Pertsov, M. Vinson, S.C. Müller, Three-dimensional reconstruction of organizing centers in excitable chemical media. Phys. D 63, 233 (1993)

    Article  MATH  Google Scholar 

  26. C. Luengviriya, S.C. Müller, M.J.B. Hauser, Reorientation of scroll rings in an advective field. Phys. Rev. E 77, 015201 (2008)

    Article  ADS  Google Scholar 

  27. L.J. Schwartz, C.L. DeCiantis, S. Chapman, B.K. Kelley, J.P. Hornak, Motions of water, decane, and bis(2-ethylhexyl)sulfosuccinate sodium salt in reverse micelle solutions. Langmuir 15, 5461 (1999)

    Article  Google Scholar 

  28. J. Schütze, O. Steinbock, S.C. Müller, Forced vortex interaction and annihilation in an active medium. Nature 356, 45–47 (1992)

    Article  ADS  Google Scholar 

  29. C. Luengviriya, M.J.B. Hauser, Stability of scroll ring orientation in an advective field. Phys. Rev. E 77, 056214 (2008)

    Article  ADS  Google Scholar 

  30. V.K. Vanag, Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions, Physics-Uspekhi47 (9), 923–941 (2004)

    Google Scholar 

  31. P. Dähmlow, V.K. Vanag, S.C. Müller, Effect of solvents on the pattern formation in a Belousov-Zhabotinsky reaction embedded into a microemulsion. Phys. Rev. E 89, 010902(R) (2014)

    Google Scholar 

  32. H.F. Eicke, J. Naudts, Non-linear field effects due to activation-energy-controlled charge transport in microemulsions. Chem. Phys. Lett. 142, 1 (1987)

    Article  Google Scholar 

  33. P. Dähmlow, S.C. Müller, Nonlinear effects of electric fields in the Belousov-Zhabotinsky reaction dissolved in a microemulsion. Chaos 25(4):043117 (2015)

    Google Scholar 

  34. S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. O.D. Bedford, G. Ilgenfritz, Electric field effects in AOT w/o microemulsions: field-induced percolation and dynamics of structure changes. Colloid Polym. Sci. 278, 692–696 (2000)

    Article  Google Scholar 

  36. L. Schlicht, J.-H. Spilgies, F. Runge, S. Lipgens, S. Boye, D. Schübel, G. Ilgenfritz, Temperature-, electric field- and solute-induced percolation in water-in-oil microemulsions. Biophys. Chem. 58, 1–2 (1996)

    Article  Google Scholar 

  37. J. Carballido-Landeira, P. Taboada, A.P. Muñuzuri, Effect of electric field on Turing patterns in a microemulsion. Soft Matter 8, 2945–2949 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Dähmlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dähmlow, P., Luengviriya, C., Müller, S.C. (2015). Electric Field Effects in Chemical Patterns. In: Müller, S., Parisi, J. (eds) Bottom-Up Self-Organization in Supramolecular Soft Matter. Springer Series in Materials Science, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-19410-3_3

Download citation

Publish with us

Policies and ethics