Skip to main content

Self-organization of Nanoparticle-Membrane Systems: Reconstitution of Cell Migration

  • Chapter
  • First Online:
  • 903 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 217))

Abstract

Thanks to the development of experimental techniques and theories to study biological systems, it has been elucidated that a cell migrates through the deformation of cell membranes driven by the collective motion of self-propelled particles, in its cytoskeleton. It is known that there is not only the biological self-propelled particles but nonbiological self-propelled colloids. Dynamical properties of colloids and cell membranes have been well studied in terms of soft matter physics . Utilizing the knowledge of soft matter physics, we have been studying the reconstitution of cell migration using the complex of artificial vesicles of phospholipids, which are the main components of cell membranes, and self-propelled colloids. In this chapter, we introduce the physics and our recent results relevant to the artificial cell without biological active molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons, A.R. Horwitz, Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  ADS  Google Scholar 

  2. D.A. Lauffenburger, A.F. Horwitz, Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  Google Scholar 

  3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2008)

    Google Scholar 

  4. R. Phillips, J. Kondev, J. Theriot, H. Garcia, Physical Biology of the Cell (Garland Science, New York, 2012)

    Google Scholar 

  5. U. Euteneuer, M. Schliwa, Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984)

    Article  ADS  Google Scholar 

  6. T. Pollard, G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    Article  Google Scholar 

  7. K. Kruse, S. Camalet, F. Jülicher, Self-propagating patterns in active filament bundles. Phys. Rev. Lett. 87, 138101 (2001)

    Article  ADS  Google Scholar 

  8. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92, 078101 (2004)

    Article  ADS  Google Scholar 

  9. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Euro. Phys. J. E 16, 5–16 (2005)

    Article  Google Scholar 

  10. A. Zumdieck, M.C. Lagomarsino, C. Tanase, K. Kruse, B. Mulder, M. Dogterom, F. Jülicher, Continuum description of the cytoskeleton: ring formation in the cell cortex. Phys. Rev. Lett. 95, 258103 (2005)

    Article  ADS  Google Scholar 

  11. G. Salbreux, J.F. Joanny, J. Prost, P. Pullarkat, Shape oscillations of non-adhering fibroblast cells. Phys. Biol. 4, 268–284 (2007)

    Article  ADS  Google Scholar 

  12. J.Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.F. Joanny, E. Paluch, Role of cortical tension in bleb growth. Proc. Nat. Acad. Sci. U. S. A. 106, 18581–18586 (2009)

    Article  ADS  Google Scholar 

  13. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  Google Scholar 

  14. R.A. Simha, S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002)

    Article  ADS  Google Scholar 

  15. S. Ramaswamy, The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010)

    Article  ADS  Google Scholar 

  16. A. Bricard, J.B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013)

    Article  ADS  Google Scholar 

  17. H.R. Jiang, N. Yoshinaga, M. Sano, Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010)

    Article  ADS  Google Scholar 

  18. W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Chemical locomotion. Angew. Chem. Int. Ed. 45, 5420–5429 (2006)

    Article  Google Scholar 

  19. A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965)

    Article  Google Scholar 

  20. M.I. Angelova, D.S. Dimitrov, Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)

    Article  Google Scholar 

  21. H. Ito, T. Yamanaka, S. Kato, T. Hamada, M. Takagi, M. Ichikawa, K. Yoshikawa, Dynamical formation of lipid bilayer vesicles from lipid-coated droplets across a planar monolayer at an oil/water interface. Soft Matter 9, 9539–9547 (2013)

    Article  Google Scholar 

  22. T. Hamada, Y. Miura, Y. Komatsu, Y. Kishimoto, M.C. Vestergaard, M. Takagi, Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil micro-droplets. J. Phys. Chem. B 112, 14678–14681 (2008)

    Article  Google Scholar 

  23. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)

    Google Scholar 

  24. R. Lipowsky, The conformation of membranes. Nature 349, 475–481 (1991)

    Article  ADS  Google Scholar 

  25. T. Hamada, K. Yoshikawa, Cell-sized liposomes and droplets: real-world modeling of living cells. Materials 5, 2292–2305 (2012)

    Article  ADS  Google Scholar 

  26. K. Ishii, T. Hamada, M. Hatakeyama, R. Sugimoto, T. Nagasaki, M. Takagi, Reversible control of exo- and endo-budding transitions in a photosensitive lipid membrane. ChemBioChem 10, 251–256 (2009)

    Article  Google Scholar 

  27. H. Hotani, Transformation pathways of liposomes. J. Mol. Biol. 178, 113–120 (1984)

    Article  Google Scholar 

  28. T. Hamada, Y. Kishimoto, T. Nagasaki, M. Takagi, Lateral phase separation in tense membranes. Soft Matter 7, 9061–9068 (2011)

    Article  ADS  Google Scholar 

  29. T. Hamada, Y. Miura, K. Ishii, S. Araki, K. Yoshikawa, M.C. Vestergaard, M. Takagi, Dynamic processes in endocytic transformation of a raft-exhibiting giant liposome. J. Phys. Chem. B 111, 10853–10857 (2007)

    Article  Google Scholar 

  30. K. Simons, M.J. Gerl, Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010)

    Article  Google Scholar 

  31. H. Hess, Self-assembly driven by molecular motors. Soft Matter 2, 669–677 (2006)

    Article  ADS  Google Scholar 

  32. F.J. Nédélec, T. Surrey, A.C. Maggs, S. Leibler, Self-organization of microtubules and motors. Nature 389, 305–308 (1997)

    Article  ADS  Google Scholar 

  33. T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Physical properties determining self-organization of motors and microtubules. Science 292, 1167–1171 (2001)

    Article  ADS  Google Scholar 

  34. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments. Nature 467, 73–77 (2010)

    Article  ADS  Google Scholar 

  35. V. Schaller, C. Weber, E. Frey, A.R. Bausch, Polar pattern formation: hydrodynamic coupling of driven filaments. Soft Matter 7, 3213–3218 (2011)

    Article  ADS  Google Scholar 

  36. V. Schaller, A.R. Bausch, Topological defects and density fluctuations in collectively moving systems. Proc. Nat. Acad. Sci. U. S. A. 110, 4488–4493 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012)

    Article  ADS  Google Scholar 

  38. I.S. Aranson, L.S. Tsimring, Pattern formation of microtubules and motors: inelastic interaction of polar rods. Phys. Rev. E 71, 050901(R) (2005)

    Article  ADS  Google Scholar 

  39. I.S. Aranson, L.S. Tsimring, Theory of self-assembly of microtubules and motors. Phys. Rev. E 74, 031915 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  40. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  41. F. Jülicher, K. Kruse, J. Prost, J.F. Joanny, Active behavior of the cytoskeleton. Phys. Rep. 449, 3–28 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  42. S.E. Ebbens, J.R. Howse, In pursuit of propulsion at the nanoscale. Soft Matter 6, 726–738 (2010)

    Article  ADS  Google Scholar 

  43. K. Nagai, Y. Sumino, H. Kitahata, K. Yoshikawa, Mode selection in the spontaneous motion of an alcohol droplet. Phys. Rev. E 71, 065301(R) (2005)

    Article  ADS  Google Scholar 

  44. D. Takagi, A.B. Braunschweig, J. Zhang, M.J. Schelley, Dispersion of self-propelled rods undergoing fluctuation-driven flips. Phys. Rev. Lett. 110, 038301 (2013)

    Article  ADS  Google Scholar 

  45. F. Kümmel, B. Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Circular Motion of Asymmetric Self-Propelling Particles. Phys. Rev. Lett. 110, 198302 (2013)

    Article  ADS  Google Scholar 

  46. J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013)

    Article  ADS  Google Scholar 

  47. T. Hamada, M. Morita, M. Miyakawa, R. Sugimoto, A. Hatanaka, M.C. Vestergaard, M. Takagi, Size-dependent partitioning of nano/microparticles mediated by membrane lateral heterogeneity. J. Am. Chem. Soc. 134, 13990–13996 (2012)

    Article  Google Scholar 

  48. I. Koltover, J.O. Rädler, C.R. Safinya, Membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles. Phys. Rev. Lett. 82, 1991–1994 (1999)

    Article  ADS  Google Scholar 

  49. H. Aranda-Espinoza, Y. Chen, N. Dan, T.C. Lubensky, P. Nelson, L. Ramos, D.A. Weitz, Electrostatic repulsion of positively charged vesicles and negatively charged object. Science 285, 394–397 (1999)

    Article  Google Scholar 

  50. W. Helfrich, Steric interaction of fluid membranes in multilayer systems. Z. Naturforsch. 33a, 305–315 (1978)

    ADS  Google Scholar 

  51. T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012)

    Article  ADS  Google Scholar 

  52. T. Hamada, R. Sugimoto, T. Nagasaki, M. Takagi, Photochemical control of membrane raft organization. Soft Matter 7, 220–224 (2011)

    Article  ADS  Google Scholar 

  53. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  ADS  Google Scholar 

  54. L.D. Landau, E.M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 1975)

    Google Scholar 

  55. D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, A. Sen, Intelligent, self-powered, drug delivery systems. Nanoscale 5, 1273–1283 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the colleagues, Dr. Sumino, Prof. Oiwa, Prof. Chaté, Prof. Takagi, and Dr. Morita, for the continued collaboration. The work described in this chapter was supported by MEXT KAKENHI Grant Number 21015008, JSPS KAKENHI Grant Numbers \(23\cdot 1819\) and 23740316, and Sunbor Grant from the Suntory Foundation for Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken H. Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagai, K.H., Hamada, T. (2015). Self-organization of Nanoparticle-Membrane Systems: Reconstitution of Cell Migration. In: Müller, S., Parisi, J. (eds) Bottom-Up Self-Organization in Supramolecular Soft Matter. Springer Series in Materials Science, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-19410-3_11

Download citation

Publish with us

Policies and ethics