Skip to main content

Eco-friendly Textile Dyeing Processes

  • Chapter

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 6))

Abstract

Environmental pollution is a major concern for textile industries. The generation of voluminous amounts of effluent and their disposal into the water bodies without proper treatment has lead to detrimental effects on environment. The textile effluent is characterized by high chemical oxygen demand (COD), biological oxygen demand (BOD), total dissolved solids (TDS), pH, and color. Fabric preparation steps like, desizing, scouring, bleaching, mercerizing, involve the use of various chemicals and plenty of water. Desizing process alone has been reported to account for about 50 % volume of effluent generated in textile industries. On the other hand, dyeing operation makes use of huge amount of dyes. During dyeing, in order to increase the amount of dye fixed to the cloth, auxiliary chemicals including sodium chloride and sodium carbonate are added in conventional process. In spite of this, large amount of dyes remain unconsumed in the process and find their way to the effluent along with the electrolytes added and pose serious threat to the environment by making the receiving water reservoirs unsuitable for agriculture and human consumption. The available end-of-pipe treatment procedures are either expensive or less efficient. Hence a large number of small-scale industries succumb to this problem. So finding an alternative eco-friendly process of textile production is of paramount interest.

Here we review three potential eco-friendly systems in textile dyeing processes to minimize salt and water consumption. First, we review application of enzymatic processing in fabric preparation. Some of the enzymes involved in desizing, scouring and bleaching operations are amylases, pectinases, glucose oxidases, catalases, etc. Enzymes can eliminate use of strong alkali and subsequent water washes. It has been reported that 10 kg of enzyme can save up to 20,000 kg of water consumption per ton of yarn processed. Secondly, we review the use of bio-degradable organic salts like trisodium citrate, magnesium acetate, tetrasodium edate, sodium salts of polycarboxylic acids etc., as fixation and exhaustion agents. It is reported that total dissolved solids content in the spent liquor released from trisodium citrate dyeing process is about 40–65 % less than that of conventional sodium chloride dyeing. Finally, we review surface modifications of cotton to reduce the volume of effluent and total dissolved solids. Cationization of fibre surface results in salt-free dyeing process. Various monomers, polymers, dendrimers, chitosan etc. are used for cationization. The effects of other surface modification techniques like plasma treatment, corona discharge are also reviewed. It has been reported that plasma treatment of cotton fiber increases percentage exhaustion and K/S by about 10 % and 14 % respectively in reactive dyeing. These aspects can contribute to a more eco-friendly textile processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

o.w.b.:

On weight of bath

o.w.f.:

On weight of fabric

REST:

Rapid Enzymatic Single-bath Treatment

TDS:

Total dissolved solids

References

  • Ahmed NSE (2005) The use of sodium edate in the dyeing of cotton with reactive dyes. Dyes Pigm 65(3):221–225. doi:10.1016/j.dyepig.2004.07.014

    Article  CAS  Google Scholar 

  • Aly S, Sayed SM, Zahran MK (2010) One-step process for enzymatic desizing and bioscouring of cotton fabrics. J Nat Fibers 7(2):71–92. doi:10.1080/15440478.2010.481086

    Article  CAS  Google Scholar 

  • Babu BR, Parande AK, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    CAS  Google Scholar 

  • Basto C, Tzanov T, Cavaco-Paulo A (2007) Combined ultrasound-laccase assisted bleaching of cotton. Ultrason Sonochem 14(3):350–354. doi:10.1016/j.ultsonch.2006.07.006

    Article  CAS  Google Scholar 

  • Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J (2011) Application of thermostable xylanase of bacillus pumilus in textile processing. Indian J Microbiol 52(2):222–229. doi:10.1007/s12088-011-0118-1

    Article  Google Scholar 

  • Bhogle S (2007) Case study on waste water disposal practices and likely treatment options in textile processing units in Tamil Nadu, TIDE, Bangalore

    Google Scholar 

  • Burkinshaw SM, Gotsopoulos A (1999) Pretreatment of cotton to enhance its dyeability; part 2. Direct dyes. Dyes Pigm 42(2):179–195. doi:10.1016/S0143-7208(99)00003-0

    Article  CAS  Google Scholar 

  • Burkinshaw SM, Lei XP, Lewis DM (1989) Modification of cotton to improve its dyeability. I. Pretreating cotton with reactive polyamide/epichlorohydrin resin. J Soc Dye Colour 105:391–398. doi:10.1111/j.1478-4408.1989.tb01189.x

    Article  CAS  Google Scholar 

  • Burkinshaw SM, Lei XP, Lewis DM, Easton JR, Parton B, Phillips DAS (1990) Modification of cotton to improve its dyeability. Part II. Pretreating cotton with a thiourea derivative of polyamide-epichlorohydrin resins. J Soc Dye Colour 106(10):307–315. doi:10.1111/j.1478-4408.1990.tb01227.x

    Article  CAS  Google Scholar 

  • Burkinshaw S, Mignanelli M, Froehling P, Bide M (2000) The use of dendrimers to modify the dyeing behaviour of reactive dyes on cotton. Dyes Pigm 47(3):259–267. doi:10.1016/S0143-7208(00)00053-X

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Gübitz GM (2003) Textile processing with enzymes. Woodhead publishing limited, CRC Press, Cambridge

    Book  Google Scholar 

  • Chattopadhyay DP, Chavan RB, Sharma JK (2007) Salt-free reactive dyeing of cotton. Int J Cloth Sci Technol 19(2):99–108. doi:10.1108/09556220710725702

    Article  Google Scholar 

  • Costa SA, Tzanov T, Carneiro F, Gübitz GM, Cavaco-paulo A (2002) Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotech Lett 24(3):173–176. doi:10.1023/A:1014136703369

  • Csiszár E, Urbánszki K, Szakács G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B: Enzym 11:1065–1072. doi:10.1016/S1381-1177(00)00149-1

    Article  Google Scholar 

  • Dalvi P, Anthappan P, Darade N, Kanoongo N, Adivarekar R (2007) Amylase and pectinase from single source for simultaneous desizing and scouring. Indian J Fibre Text Res 32(4):459–465

    CAS  Google Scholar 

  • Degani O, Gepstein S, Dosoretz CG (2002) Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotechnol 102–103(1–6):277–289. doi:10.1385/ABAB:102-103:1-6:277

    Article  Google Scholar 

  • Eldefrawy NMH, Shaalan HF (2007) Integrated membrane solutions for green textile industries. Desalination 204(1–3):241–254. doi:10.1016/j.desal.2006.03.542

    Article  CAS  Google Scholar 

  • Eleftheriadis IC, Pegiadou-Koemtzopoulou SA, Papazoglou VM, Kehayoglou AH (1996) Direct dyes on cotton grafted with 2-vinylpyridine and quaternised with alkyl bromides or epichlorohydrin. J Soc Dye Colour 112(12):375–378. doi:10.1111/j.1478-4408.1996.tb01777.x

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Youssef YA, Ahmed NSE, Mousa AA (2007) The use of sodium edate in dyeing: II. Union dyeing of cotton/wool blend with hetero bi-functional reactive dyes. Dyes Pigm 72(1):57–65. doi:10.1016/j.dyepig.2005.07.017

    Article  Google Scholar 

  • Eren HA, Anis P, Davulcu A (2009) Enzymatic one-bath desizing – bleaching – dyeing process for cotton fabrics. Text Res J 79(12):1091–1098. doi:10.1177/0040517508099388

    Article  CAS  Google Scholar 

  • Etters JN (1999) Cotton preparation with alkaline pectinase: an environmental advance. Text Chem Color Am Dyest Rep 1(3):33–36

    Google Scholar 

  • Evans GE, Shore J, Stead CV (1984) Dyeing behavior of cotton after pretreatment with reactive quaternary compounds. J Soc Dye Colour 100(10):304–315. doi:10.1111/j.1478-4408.1984.tb00946.x

    Article  CAS  Google Scholar 

  • Farha SAA, Gamal AM, Sallam HB, Mahmoud GEA, Ismail LFM (2010) Sodium edate and sodium citrate as an exhausting and fixing agents for dyeing cotton Fabric with reactive dyes and reuse of dyeing effluent. J Am Sci 6(10):109–127

    Google Scholar 

  • Fukuda T, Kato-Murai M, Kuroda K, Ueda M, Suye S-I (2008) Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Appl Microbiol Biotechnol 77(6):1225–1232. doi:10.1007/s00253-007-1263-7

    Article  CAS  Google Scholar 

  • Gamal AM, Farha SAA, Sallam HB, Mahmoud GEA, Ismail LFM (2010) Kinetic study and equilibrium isotherm analysis of reactive dyes adsorption onto cotton fiber. Nat Sci 8(11):95–110

    Google Scholar 

  • Guan Y, Zheng Q, Mao Y, Gui M, Fu H (2007) Application of polycarboxylic acid sodium salt in the dyeing of cotton fabric with reactive dyes. J Appl Polym Sci 105(2):726–732. doi:10.1002/app.26091

    Article  CAS  Google Scholar 

  • Guthrie JD (1947) Introduction of amino groups into cotton fabric by use of 2-aminoethylsulfuric acid. Text Res J 17:625–629. doi:10.1177/004051754701701105

    Article  CAS  Google Scholar 

  • Hauser PJ, Tabba AH (2001) Improving the environmental and economic aspects of cotton dyeing using a cationised cotton. Color Technol 117:282–288. doi:10.1111/j.1478-4408.2001.tb00076.x

    Article  CAS  Google Scholar 

  • Hebeish A, Hashem M, Shaker N, Ramadan M, El-Sadek B, Hady MA (2009) New development for combined bioscouring and bleaching of cotton-based fabrics. Carbohydr Polym 78:961–972. doi:10.1016/j.carbpol.2009.07.019

    Article  CAS  Google Scholar 

  • Jakob B (1998) The removal of starch-based sizes. I. Enzymatic breakdown – more than just desizing. Melliand Textilber 79(7–8):523–527

    CAS  Google Scholar 

  • Kaki Jouko, Luttikhedde Hendrik, Nurmi Karl, et al (2003) Type of cationic starch product, preparation thereof and its use. US.APP. 20030177915

    Google Scholar 

  • Karmakar SR (1999) Chemical technology in the pre-treatment processes of textiles. Textile science and technology, vol 12. Elsevier, Amsterdam

    Google Scholar 

  • Kawagoshi Y, Fujita M (1998) Purification and properties of the polyvinyl alcohol-degrading enzyme 2, 4-pentanedione hydrolase obtained from Pseudomonas vesicularis var. povalolyticus pH. World J Microbiol Biotechnol 14(1):95–100. doi:10.1023/A:1008884719267

    Article  CAS  Google Scholar 

  • Khan AF, Arif S (2006) Development and applications of animal amylases for enzymatic desizing of woven fabric. Pak J Sci Ind Res 49(2):103–105

    CAS  Google Scholar 

  • Kitkulnumchai Y, Ajavakom A, Sukwattanasinitt M (2008) Treatment of oxidized cellulose fabric with chitosan and its surface activity towards anionic reactive dyes. Cellulose 15(4):599–608. doi:10.1007/s10570-008-9214-8

    Article  CAS  Google Scholar 

  • Kranthi KR, Venugopalan MV, Sabesh M, Yadav MS (2011) CICR vision 2030. Indian Council of Agricultural Research, p 6. Downloaded from www.cicr.org.in/pdf/CICR_VISION_2030.pdf on 8 Aug 2013

  • Križman P, Kovač F, Tavčer PF (2005) Bleaching of cotton fabric with peracetic acid in the presence of different activators. Color Technol 121(6):304–309. doi:10.1111/j.1478-4408.2005.tb00373.x

    Article  Google Scholar 

  • Lewis DM, Mcilroy KA (1997) The chemical modification of cellulosic fibres to enhance dyeability. Color Technol 27(1):5–17. doi:10.1111/j.1478-4408.1997.tb03770.x

    Article  CAS  Google Scholar 

  • Lim S (2002) Synthesis of a fiber-reactive chitosan derivative and its application to cotton fabric as an antimicrobial finish and a dyeing-improving agent. North Carolina State University

    Google Scholar 

  • Lim SH, Hudson SM (2004) Application of a fibre-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary. Color Technol 120(3):108–113

    Article  CAS  Google Scholar 

  • Lim S-H, Lee JJ, Hinks D, Hauser P (2005) Bleaching of cotton with activated peroxide systems. Color Technol 121(2):89–95. doi:10.1111/j.1478-4408.2005.tb00258.x

    Article  CAS  Google Scholar 

  • Liu L, Yao J (2011) Salt-free dyeability of thiourea grafted cotton fabric. Fibers Polym 12(1):42–49. doi:10.1007/s12221-011-0042-3

    Article  Google Scholar 

  • Ma W, Zhang S, Tang B, Yang J (2005) Pretreatment of cotton with poly (vinylamine chloride) for salt-free dyeing with reactive dyes. Color Technol 121(4):193–197. doi:10.1111/j.1478-4408.2005.tb00272.x

    Article  CAS  Google Scholar 

  • Montazer M, Malek RMA, Rahimi A (2007) Salt free reactive dyeing of cationized cotton. Fibers Polym 8(6):608–612. doi:10.1007/BF02875997

    Article  CAS  Google Scholar 

  • Moore SB (1993) Low toxicity, biodegradable salt substitute for dyeing textiles: magnesium acetate in direct or reactive dyeing of cotton. 1–9. US Patent 5,207,800

    Google Scholar 

  • Mori T, Sakimoto M, Kagi T, Saki T (1997) Enzymatic dezing of polyvinyl alcohol from cotton fabrics. J Chem Technol Biotechnol 68(2):151–156. doi:10.1002/(SICI)1097-4660(199702)68:2<135::AID-JCTB583>3.0.CO;2-C

    Article  CAS  Google Scholar 

  • Nielsen PH, Kuilderd H, Zhou W, Lu X (2009) Enzyme biotechnology for sustainable textiles. In: Blackburn RS (ed) Sustainable textiles. Woodhead/CRC Press, Cambridge/New York, pp 113–138

    Google Scholar 

  • Ntuli F, Ikhu-omoregbe D, Kuipa PK, Muzenda E, Belaid M (2009) Characterization of effluent from textile wet finishing operations. In: Proceedings of the world congress on engineering and computer science I: WCECS ‘09, San Francisco, USA, 20–22 Oct 2009. Lecture notes in engineering and computer science. Newswood Limited, pp. 69–74.

    Google Scholar 

  • Office of Compliance, Office of Enforcement and Compliance Assurance, Agency USEP, USA (1997) EPA office of compliance sector notebook project : profile of the textile industry

    Google Scholar 

  • Öner E, Sahinbaskan BY (2011) A new process of combined pretreatment and dyeing: REST. J Clean Prod 19(14):1668–1675. doi:10.1016/j.jclepro.2011.05.008

    Article  Google Scholar 

  • Parvinzadeh M, Kiumarsi A (2008) Lipase enzyme to improve dyeability of polyamide substrate. J Biotechnol 136:S299. doi:10.1016/j.jbiotec.2008.07.1878

    Article  Google Scholar 

  • Patin A, Caballero G, Rodrı C, Patino A, Canal C, Rodriguez C, Navarro A, Canal JM (2011) Surface and bulk cotton fibre modifications: plasma and cationization. Influence on dyeing with reactive dye. Cellulose 18(4):1073–1083. doi:10.1007/s10570-011-9554-7

    Article  Google Scholar 

  • Periyasamy AP, Dhurai B, Thangamani K (2011) Salt-free dyeing – a new method of dyeing on lyocell/cotton blended fabrics with reactive dyes. Autex Res J 11(1):14–17

    Google Scholar 

  • Ponnusami V, Srivastava SN (2009) Studies on application of teak leaf powders for the removal of color from synthetic and industrial effluents. J Hazard Mater 169(1–3):1159–1162. doi:10.1016/j.jhazmat.2009.03.142

    Article  CAS  Google Scholar 

  • Ponnusami V, Krithika V, Madhuram R, Srivastava SN (2007) Biosorption of reactive dye using acid-treated rice-husk: factorial design analysis. J Hazard Mater 142(1–2):397–403. doi:10.1016/j.jhazmat.2006.08.040

    Article  CAS  Google Scholar 

  • Ponnusami V, Lavanya N, Meenal M, Raj RAG, Srivastava SN (2008a) Application of nitric acid treated rice husk for sorption of reactive dye reactive black 5: analysis using statistical experimental design. Pollut Res 27(1):45–48

    CAS  Google Scholar 

  • Ponnusami V, Vikram S, Srivastava SN (2008b) Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater 152(1):276–286. doi:10.1016/j.jhazmat.2007.06.107

    Article  CAS  Google Scholar 

  • Ponnusami V, Gunasekar V, Srivastava SN (2009) Kinetics of methylene blue removal from aqueous solution using gulmohar (Delonix regia) plant leaf powder: multivariate regression analysis. J Hazard Mater 169(1–3):119–127. doi:10.1016/j.jhazmat.2009.03.066

    Article  CAS  Google Scholar 

  • Ponnusami V, Rajan KS, Srivastava SN (2010) Application of film-pore diffusion model for methylene blue adsorption onto plant leaf powders. Chem Eng J 163(3):236–242. doi:10.1016/j.cej.2010.07.052

    Article  CAS  Google Scholar 

  • Prabhu KH, Karthikeyan N, Shyam Sundar P (2006) Combined bio-polishing and bleaching of cotton. Int Dye 191:27–31

    Google Scholar 

  • Prabu HG, Sundrarajan M (2002) Effect of the bio-salt trisodium citrate in the dyeing of cotton. Color Technol 118(3):131–134. doi:10.1111/j.1478-4408.2002.tb00370.x

    Article  CAS  Google Scholar 

  • Pratibha R, Malar P, Rajapriya T, Balapoornima S, Ponnusami V (2010) Statistical and equilibrium studies on enhancing biosorption capacity of Saccharomyces cerevisiae through acid treatment. Desalination 264:102–107

    Article  CAS  Google Scholar 

  • Pricelius S, Ludwig R, Lant NJ, Haltrich D, Guebitz GM (2011) In situ generation of hydrogen peroxide by carbohydrate oxidase and cellobiose dehydrogenase for bleaching purposes. Biotechnol J 6(2):224–230. doi:10.1002/biot.201000246

    Article  CAS  Google Scholar 

  • Qian D, Du G, Chen J (2004) Isolation and culture characterization of a new polyvinyl alcohol-degrading strain: penicillum sp. WSH02–21. World J Microbiol Biotechnol 20(6):587–591. doi:10.1023/B:WIBI.0000043172.83610.08

    Article  CAS  Google Scholar 

  • Rajendran R, Karthik SS, Radhai R, Rajapriya P (2011) Bioscouring of cotton fabrics using pectinase enzyme its optimisation and comparison with conventional scouring process. Pak J Biol Sci 14(9):519–525. doi:10.3923/pjbs.2011.519.525

    Article  CAS  Google Scholar 

  • Ramasamy R, Abdelbagi H, Ahmed M, Karthik SS (2012) Development of microbial consortium for the biodegradation and biodecolorization of textile effluents. J Urban Environ Eng 6(1):36–41. doi:10.4090/juee.2012.v6n1.036041

    Article  Google Scholar 

  • Ristić N, Jovančić P, Canal C, Jocić D (2009) One-bath one-dye class dyeing of PES/cotton blends after corona and chitosan treatment. Fibers Polym 10(4):466–475. doi:10.1007/s12221-009-0466-1

    Article  Google Scholar 

  • Saravanan D, Ramachandran T (2007) Efficiency and evaluation of amylases in desizing. Asian Dyer 4(6):64–67

    CAS  Google Scholar 

  • Sawada K, Ueda M (2001) Enzyme processing of textiles in reverse micellar solution. J Biotechnol 89(2–3):263–269. doi:10.1016/S0168-1656(01)00310-8

    Article  CAS  Google Scholar 

  • Sawada K, Tokino S, Ueda M (1998) Bioscouring of cotton with pectinase enzyme in a non-aqueous system. J Soc Dye Colour 114:355–359. doi:10.1111/j.1478-4408.1998.tb01937.x

    Article  CAS  Google Scholar 

  • Sawada K, Ueda M, Kajiwara K (2004) Simultaneous dyeing and enzyme processing of fabrics in a non-ionic surfactant reverse micellar system. Dyes Pigm 63(3):251–258. doi:10.1016/j.dyepig.2004.03.006

    Article  CAS  Google Scholar 

  • Shafie AE, Fouda MMG, Hashem M (2009) One-step process for bio-scouring and peracetic acid bleaching of cotton fabric. Carbohydr Polym 78(2):302–308. doi:10.1016/j.carbpol.2009.04.002

    Article  Google Scholar 

  • Sheth GN, Musaie A (2003) Application of biotechnology to desizing of cotton fabrics. BTRA Scan 33(2):18–21

    CAS  Google Scholar 

  • Špička N, Tavčer PF (2011) Glucose oxidases-potential enzymes for bleaching textile fibres. Tekstilec 54(1–3):16–29

    Google Scholar 

  • Suzuki T (1976) Purification and some properties of polyvinyl alcohol degrading enzyme produced by Pseudomonas O-3. Agric Biol Chem 40(3):497–504

    Article  CAS  Google Scholar 

  • Tanapongpipat A, Khamman C, Pruksathorm K, Hunsom M (2008) Process modification in the scouring process of textile industry. J Clean Prod 16(1):152–158. doi:10.1016/j.jclepro.2006.06.016

    Article  Google Scholar 

  • Teng X, Ma W, Zhang S (2010) Application of tertiary amine cationic polyacrylamide with high cationic degree in salt-free dyeing of reactive dyes. Chin J Chem Eng 18(6):1023–1028. doi:10.1016/S1004-9541(09)60163-4

    Article  CAS  Google Scholar 

  • Tian L, Branford-white C, Wang W, Nie H, Zhu L (2012) International Journal of Biological Macromolecules Laccase-mediated system pretreatment to enhance the effect of hydrogen peroxide bleaching of cotton fabric. Int J Biol Macromol 50(3):782–787. doi:10.1016/j.ijbiomac.2011.11.025

    Article  CAS  Google Scholar 

  • Tzanov T, Calafell M, Guebitz GM, Cavaco-Paulo A (2001) Bio-preparation of cotton fabrics. Enzyme Microb Technol 29(6–7):357–362. doi:10.1016/S0141-0229(01)00388-X

    Article  CAS  Google Scholar 

  • Tzanov T, Costa SA, Gübitz GM, Cavaco-Paulo A (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93(1):87–94. doi:10.1016/S0168-1656(01)00386-8

    Article  CAS  Google Scholar 

  • Tzanov T, Basto C, Gübitz GM, Cavaco-Paulo A (2003) Laccases to improve the whiteness in a conventional: bleaching of cotton. Macromol Mater Eng 288(10):807–810. doi:10.1002/mame.200300100

    Article  CAS  Google Scholar 

  • Wang H, Lewis DM (2002) Chemical modification of cotton to improve fibre dyeability. Colo Technol 118(4):159–168. doi:10.1111/j.1478-4408.2002.tb00094.x

    Article  CAS  Google Scholar 

  • Wang Q, Fan X, Hua Z, Gao W, Chen J (2007) Degradation kinetics of pectins by an alkaline pectinase in bioscouring of cotton fabrics. Carbohydr Polym 67(4):572–575. doi:10.1016/j.carbpol.2006.06.031

    Article  CAS  Google Scholar 

  • Wei MA, Shu-fen Z, Jin-zong Y (2005) Development of functional polymers in modification of cotton for improving dyeability of reactive dyes. In: Proceedings of the 3rd international conference on functional molecules, pp 69–75

    Google Scholar 

  • Wu TS, Chen KM (1992) New cationic agents for improving the dyeability of cellulose fibres. Part 1 – pretreating cotton with polyepichlorohydrin-amine polymers for improving dyeability with direct dyes. J Soc Dye Colour 108(9):388–394. doi:10.1111/j.1478-4408.1992.tb01486.x

    Article  CAS  Google Scholar 

  • Wu TS, Chen KM (1993) New cationic agents for improving the dyeability of cellulose fibres. Part 2 – pretreating cotton with polyepichlorohydrin-amine polymers for improving dyeability with reactive dyes. J Soc Dye Colour 109(4):153–158. doi:10.1111/j.1478-4408.1993.tb01547.x

    Article  CAS  Google Scholar 

  • Xie K, Hou A, Sun Y (2006) The morphological structures of net-modified cotton cellulose with triazine derivative containing multireactive groups. J Appl Polym Sci 101(4):2700–2707. doi:10.1002/app.24476

    Article  CAS  Google Scholar 

  • Xie K, Hou A, Wang X (2008) Dyeing and diffusion properties of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 72(4):646–651. doi:10.1016/j.carbpol.2007.10.005

    Article  CAS  Google Scholar 

  • Xie K, Liu H, Wang X (2009) Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohydr Polym 78(3):538–542. doi:10.1016/j.carbpol.2009.05.013

    Article  CAS  Google Scholar 

  • Xie K, Hu C, Zhang X (2012) Low temperature bleaching and dyeing properties of modified cellulose fabrics with triazine derivative. Carbohydr Polym 87(2):1756–1762. doi:10.1016/j.carbpol.2011.09.085

    Article  CAS  Google Scholar 

  • Xu C, Long X, Du J, Fu S (2012) A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton. Carbohydr Polym. doi:10.1016/j.carbpol.2012.08.088

    Google Scholar 

  • Zhang M (2007) Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydr Polym 69(1):123–129. doi:10.1016/j.carbpol.2006.09.011

    Article  CAS  Google Scholar 

  • Zhang S, Ma W, Ju B, Dang N, Zhang M (2005) Continuous dyeing of cationised cotton with reactive dyes. Color Technol 121(4):183–186

    Article  CAS  Google Scholar 

  • Zhang F, Chen Y, Lin H, Lu Y (2007) Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary. Color Technol 123(6):351–357. doi:10.1111/j.1478-4408.2007.00108.x

    Article  CAS  Google Scholar 

  • Zhang F, Chen Y, Lin H, Wang H, Zhao B (2008) HBP-NH2 grafted cotton fiber: preparation and salt-free dyeing properties. Carbohydr Polym 74(2):250–256. doi:10.1016/j.carbpol.2008.02.006

    Article  CAS  Google Scholar 

  • Zhigang H (2008) Chitosan nanoparticles for functional textile finishes. The Hong Kong Polytechnic University

    Google Scholar 

Download references

Acknowledgements

The authors gratefully thank SASTRA University for the financial support provided to this project through ‘‘Research and Modernization Fund’’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponnusami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gunasekar, V., Ponnusami, V. (2015). Eco-friendly Textile Dyeing Processes. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Hydrogen Production and Remediation of Carbon and Pollutants. Environmental Chemistry for a Sustainable World, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-19375-5_6

Download citation

Publish with us

Policies and ethics