Advertisement

Grind-Hardening State-of-the-Art

  • Konstantinos SalonitisEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Grind-hardening process has a history of almost 20 years. Since its introduction, numerous studies have been presented focusing on a number of aspects of the process such as the modelling of the process, the impact of the process parameters, the grinding wheel importance, etc. In the present chapter, the relevant literature to grind-hardening process is classified and summarized. More than 100 papers have been reviewed.

Keywords

Compressive Residual Stress Workpiece Material Feed Speed Residual Stress Profile Conventional Heat Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brinksmeier E, Brockhoff T (1996) Utilization of grinding heat as a new heat treatment process. CIRP Ann Manuf Technol 45:283–286CrossRefGoogle Scholar
  2. 2.
    Eda H, Ohmura E, Yamauchi S (1993) Computer visual simulation on structural changes of steel in grinding process and experimental verification. CIRP Ann Manuf Technol 42(1):389–392CrossRefGoogle Scholar
  3. 3.
    Shaw MC, Vyas A (1994) Heat-affected zones in grinding steel. CIRP Ann Manuf Technol 43(1):279–282CrossRefGoogle Scholar
  4. 4.
    Zhang L, Mahdi M (1995) Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation. Int J Mach Tools Manuf 35(10):1397–1409CrossRefGoogle Scholar
  5. 5.
    Brockhoff T (1999) Grind-hardening: a comprehensive view. CIRP Ann Manuf Technol 48(1):255–260CrossRefGoogle Scholar
  6. 6.
    Chryssolouris G, Tsirbas K, Salonitis K (2005) An analytical, numerical, and experimental approach to grind hardening. J Manuf Process 7(1):1–9CrossRefGoogle Scholar
  7. 7.
    Salonitis K, Chryssolouris G (2007) Cooling in grind-hardening operations. Int J Adv Manuf Technol 33(3-4):285–297CrossRefGoogle Scholar
  8. 8.
    Foeckerer T, Kolkowitz B, Heinzel C, Zaeh MF (2012) Experimental and numerical analysis of transient behavior during grind-hardening of AISI 52100. Prod Eng Res Devel 6(6):559–568CrossRefGoogle Scholar
  9. 9.
    Shah SM, Nelias D, Zain-ul-abdein M, Coret M (2012) Numerical simulation of grinding induced phase transformation and residual stresses in AISI-52100 steel. Finite Elem Anal Des 61:1–11CrossRefGoogle Scholar
  10. 10.
    Zurita O, Acosta A, Moreno D (2003) Superficial hardening in the plane grinding of AISI 1045 steel. J Mater Eng Perform 12(3):298–303CrossRefGoogle Scholar
  11. 11.
    Nguyen T, Zarudi I, Zhang LC (2007) Grinding-hardening with liquid nitrogen. Int J Mach Tools Manuf 47:97–106CrossRefGoogle Scholar
  12. 12.
    Nguyen T, Zhang LC (2010) Grinding–hardening using dry air and liquid nitrogen. Int J Mach Tools Manuf 50:901–910CrossRefGoogle Scholar
  13. 13.
    Salonitis K (2014) On surface grind hardening induced residual stresses. Procedia CIRP 13:264–269CrossRefGoogle Scholar
  14. 14.
    Salonitis K, Kolios A (2015) Experimental and numerical study of grind hardening induced residual stresses on AISI 1045 Steel. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-6912-x
  15. 15.
    Liu JD, Wang GC, Wang Z, Fan ST (2006) Experimental research on grind-hardening of 65Mn steel. Mater Sci Forum 505–507:787–792CrossRefGoogle Scholar
  16. 16.
    Liu LF, Zhuang JZ, Huang SW, Xu ZL (2010) Influence of original structure on the grind-hardened layer structure and its property of 65Mn steel. Key Eng Mater 455:580–584CrossRefGoogle Scholar
  17. 17.
    Fricker DC, Pearce TRA, Harison JL (2004) Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel. Proc Inst Mech Eng Part B: J Eng Manuf 218:1339–1355CrossRefGoogle Scholar
  18. 18.
    Xiao B, Park YC, Su HH, Ding WF, Fu YC, Xu JH (2006) The influence of grinding parameters on the superficial hardening effect of 48MnV microalloyed steel. Key Eng Mater 315–316:15–19CrossRefGoogle Scholar
  19. 19.
    Han Z, Zhang N, Gao D, Yang G (2007) Research into grinding hardening of microalloyed non-quenched and tempered steel. J China Univ Mining Technol 17(2):238–241CrossRefGoogle Scholar
  20. 20.
    Xiao B, Su HH, Li SS, Xu HJ (2007) Research on grind-hardening temperature and cooling rate of 48MnV microalloyed steel. Key Eng Mater 359–360:148–152Google Scholar
  21. 21.
    Zhang L, Ge P, Bi W, Zhang Q (2011) Experiment and simulation on residual stress of surface hardened layer in grind-hardening. Solid State Phenom 175:166–170CrossRefGoogle Scholar
  22. 22.
    Li SS, Xiao B, Su HH, Gong SL (2012) Simulation on grind-hardening residual stress field of 48MnV steel. Key Eng Mater 499:301–306CrossRefGoogle Scholar
  23. 23.
    Ming WW, Liu G, Chen M (2007) Experimental study on the hardened surface layer of grinding SKD-11 hardened steel. Key Eng Mater 359–360:224–228Google Scholar
  24. 24.
    Ming WW, Liu G, Chen M (2007) Study on surface grind-hardening of SKD-11 hardened steel. Int J Manuf Tech Manag 12(1/2/3):236Google Scholar
  25. 25.
    Ming WW, An QL, Chen M (2008) Study on the effect of grinding parameters to the white layer formation in grinding SKD-11 hardened steel. Adv Mater Res 53–54:279–284CrossRefGoogle Scholar
  26. 26.
    Yang G, Han Z, Du C (2009) External grind-hardening experiments and its grinding force. J Shanghai Univ (English Ed) 13(2):169–173CrossRefGoogle Scholar
  27. 27.
    Salonitis K, Stavropoulos P, Stournaras A, Chryssolouris G (2007) Finite element modeling of grind hardening process. In: Proceedings of the 10th CIRP international workshop on modeling of machining operations, Calabria, Italy, pp 117–123Google Scholar
  28. 28.
    Niemeyer B, Foeckerer T, Chaphalkar N, Hyatt GA (2013) Grind hardening method and apparatus. US Patent with Pub. No.: US 2013/0273811 A1Google Scholar
  29. 29.
    Salonitis K, Stavropoulos P, Kolios A (2014) External grind-hardening forces modelling and experimentation. Int J Adv Manuf Technol 70(1–4):523–530CrossRefGoogle Scholar
  30. 30.
    Salonitis K, Chondros T, Chryssolouris G (2008) Grinding wheel effect in the grind-hardening process. Int J Adv Manuf Technol 38:48–53CrossRefGoogle Scholar
  31. 31.
    Tsirbas K (2002) Theoretical and experimental investigation of grind-hardening process. Ph.D. dissertation, Patras University (in Greek http://nemertes.lis.upatras.gr/jspui/bitstream/10889/301/1/76.pdf)
  32. 32.
    Salonitis K (2006) A methodology for the prediction of the hardness distribution and the hardness penetration depth caused by grind-hardening process. Ph.D. dissertation, Patras University (in Greek http://nemertes.lis.upatras.gr/jspui/bitstream/10889/1430/1/Nimertis_Salonitis%28a%29.pdf)
  33. 33.
    Salonitis K, Chryssolouris G (2007) Thermal analysis of grind-hardening process. Int J Manuf Technol Manage 12(1/2/3):72–92Google Scholar
  34. 34.
    Toenshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688CrossRefGoogle Scholar
  35. 35.
    Zhang J, Ge P, Jen T-G, Zhang L (2009) Experimental and numerical studies of AISI1020 steel in grind-hardening. Int J Heat Mass Transf 52:787–795CrossRefzbMATHGoogle Scholar
  36. 36.
    Efremov VD, Zheludkevich MS, German ML (2000) Computer thermal model for hardening grinding. J Eng Phys Thermophys 73(2):428–435CrossRefGoogle Scholar
  37. 37.
    Nguyen T, Zhang LC (2009) Temperature fields in workpieces during grinding-hardening with dry air and liquid nitrogen as the cooling media. Adv Mater Res 76–78:3–8CrossRefGoogle Scholar
  38. 38.
    Nguyen T, Zhang LC, Le SD (2011) Heat transfer in grinding-hardening of a cylindrical component. Adv Mater Res 325:35–41CrossRefGoogle Scholar
  39. 39.
    Nguyen T, Zhang LC (2011) Prediction of the hardened layer in traverse cylindrical grinding-hardening. Mater Sci Forum 697–698:13–18CrossRefGoogle Scholar
  40. 40.
    Nguyen T, Zhang LC (2011) Realisation of grinding-hardening in workpieces of curved surfaces: Part 1: Plunge cylindrical grinding. Int J Mach Tools Manuf 51:309–319CrossRefGoogle Scholar
  41. 41.
    Li J, Liu S, Du C (2013) Experimental research and computer simulation of face grind-hardening technology. Strojniški vestnik - J Mech Eng 59(2):81–88CrossRefGoogle Scholar
  42. 42.
    Han ZT, Yang G, Luo HB (2013) Grinding-hardening experiments and grinding force analysis in infeed external grinding for 45 steel. Adv Mater Res 753–755:281–286CrossRefGoogle Scholar
  43. 43.
    Hyatt GA, Mori M, Foeckerer T, Zaeh MF, Niemeyer N, Duscha M (2013) Integration of heat treatment into the process chain of a mill turn center by enabling external cylindrical grind-hardening. Prod Eng Res Devel 7(6):571–584CrossRefGoogle Scholar
  44. 44.
    Yuan W, Liu JD, Xu ZL (2013) Orthogonal experimental study on the grinding-hardened layer’s depth and its uniformity of 45 steel. Adv Mater Res 668:898–901CrossRefGoogle Scholar
  45. 45.
    Yang G, Han ZT, Du CL (2014) Comparative study on the external grind-hardening experiments of 40Cr steel and 45 steel. Adv Mater Res 971–973:26–29Google Scholar
  46. 46.
    Alonso U, Ortega N, Sanchez JA, Pombo I, Plaza S, Izquierdo B (2014) In-process prediction of the hardened layer in cylindrical traverse grind-hardening. Int J Adv Manuf Technol 71(1–4):101–108CrossRefGoogle Scholar
  47. 47.
    Songyong L, Gang Y, Jiaqiang Z, Xiaohui L (2014) Numerical and experimental studies on grind-hardening cylindrical surface. Int J Adv Manuf Technol (published online)Google Scholar
  48. 48.
    Alonso U, Ortega N, Sanchez JA, Pombo I, Izquierdo B, Plaza S (2015) Hardness control of grind-hardening and finishing grinding by means of area-based specific energy. Int J Mach Tools Manuf 88:24–33CrossRefGoogle Scholar
  49. 49.
    Liu J, Yuan W, Huang S, Xu Z (2012) Experimental study on grinding-hardening of 1060 steel. Energy Procedia 16:103–108CrossRefGoogle Scholar
  50. 50.
    Liu LF, Zhuang JZ, Liu C (2011) Influence of depth of cut on grind-hardened layer and its uniformity. Appl Mech Mater 109:345–349CrossRefGoogle Scholar
  51. 51.
    Liu JD, Zhuang JZ, Huang SW (2011) Influence of the grinding pass on microstructure and its uniformity of the grind-hardened layer. Adv Mater Res 211–212:36–39CrossRefGoogle Scholar
  52. 52.
    Zhuang JZ, Liu LF, Zhang YZ (2011) Study on depth and its uniformity of 65Mn steel grind-hardened layer. Key Eng Mater 487:94–98CrossRefGoogle Scholar
  53. 53.
    Liu J, Zhuang J, Xiong J (2011) Study on grinding force of grind-hardening based on orthogonal experimental method. In: The proceedings of the second international conference on mechanic automation and control engineering (MACE), pp 1676–1678Google Scholar
  54. 54.
    Liu J, Xiong J, Yuan W (2012) Experiment study on grinding force of 65Mn steel in grinding-hardening machining. In: Future control and automation, pp 239–246Google Scholar
  55. 55.
    Liu JD, Yuan W, Xiong JK, Huang SW (2012) Quality and control of grinding-hardening in workpieces. Key Eng Mater 522:87–91CrossRefGoogle Scholar
  56. 56.
    Liu JD, Wang GC, Wang BL, Chen KM (2007) Study on the formation of grind-hardening of steel AISI 1066. Eng Mater 329:57–62Google Scholar
  57. 57.
    Hou YL, Li CH, Ding YC (2009) An investigation into integrate the surface hardening with the grinding precision finishing. Key Eng Mater 407–408:560–564CrossRefGoogle Scholar
  58. 58.
    Ma Z, Liu KM, Zhang LY (2011) Study on the structure of grind-hardened layer and parameter of hardening depth of 42CrMo steel. Adv Mater Res 189–193:969–973CrossRefGoogle Scholar
  59. 59.
    Liu KM, Zhang LY, Ma Z, Liu B (2012) Research on the properties of grind-hardening and abrasion of 42CrMo steel in agricultural diesel engine crankshaft. Adv Mater Res 619:567–571CrossRefGoogle Scholar
  60. 60.
    Zhang LY, Sun FH, Jiang YH (2012) Research on the structure and wear properties of grind-hardened 42CrMo. Adv Mater Res 619:561–566CrossRefGoogle Scholar
  61. 61.
    De Lima A, Gambaro LS, Vieira M, Baptista EA (2011) The use of cylindrical grinding to produce a martensitic structure on the surface of 4340 steel. J Braz Soc Mech Sci Eng 33(1):34–40CrossRefGoogle Scholar
  62. 62.
    Liu JD, Wang GC, Li QF, Pei HJ, Jia ZH, Wang Z (2006) Research of surface hardening based on transverse feed grinding. Mater Sci Forum 532–533:584–587CrossRefGoogle Scholar
  63. 63.
    Wang GC, Liu JD, Pei HJ, Jia ZH, Ma LJ (2006) Study on forming mechanism of surface hardening in two-pass grinding 40Cr steel. Key Eng Mater 304–305:588–592CrossRefGoogle Scholar
  64. 64.
    Zhang L, Ge PQ, Zhang JH, Zhu ZJ, Luan ZY (2007) Experimental and simulation studies on temperature field of 40Cr steel surface layer in grind-hardening. Int J Abras Technol 1(2):187–197CrossRefGoogle Scholar
  65. 65.
    Wang GC, Pei HJ, Zhang JY, Zhang CY, Li QF (2008) Formation and control of 40Cr grind-hardening. Key Eng Mater 373–374:758–761CrossRefGoogle Scholar
  66. 66.
    Li SS, Xiao B, Qin SX, Song ZH, Su HH, Gong H (2008) Investigation on simulation for grind-hardening temperature field of non-quenched and tempered steel. Key Eng Mater 375–376:520–524CrossRefGoogle Scholar
  67. 67.
    Zhang R, Ge P, Zhang L, Li B, Zhao C (2010) Numerical simulation of temperature field for rack grind-hardening. Adv Mater Res 135:200–204CrossRefGoogle Scholar
  68. 68.
    Zhang L, Gao Y, Bi W (2010) Simulation and prediction studies on harden penetration depth of AISI 5140 alloy steel in surface grinding. Appl Mech Mater 29–32:1898–1901Google Scholar
  69. 69.
    Zhang Z, Ge P, Zhang L, Tian M (2010) Study on grind-hardening temperature field based on infrared temperature measurement and numerical simulation. Key Eng Mater 443:394–399CrossRefGoogle Scholar
  70. 70.
    Liu J, Yuan W (2012) Experimental study on wear test of grind-hardened layer. Adv Mater Res 562–564:115–118Google Scholar
  71. 71.
    Han ZT, Yang G, Luo HB (2014) Research on grind-hardening process through integration of physical experiments and dynamic simulation. Adv Mater Res 941–944:1570–1573CrossRefGoogle Scholar
  72. 72.
    Yang G, Han ZT, Du CL (2014) Study on external grind-hardening experiments and the analysis of hardening effects for 40Cr steel. Appl Mech Mater 597:223–227CrossRefGoogle Scholar
  73. 73.
    Chryssolouris G, Salonitis K (2004) Theoretical Investigation of the grinding wheel effect on grind hardening process. In: Proceedings of the IFAC-MIM’04 conference on manufacturing, modelling, management and control, Athens, GreeceGoogle Scholar
  74. 74.
    Zah MF, Brinksmeier E, Hainzel C, Huntemann J-W, Fockerer T (2009) Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. Prod Eng Res Devel 3(3):271–279CrossRefGoogle Scholar
  75. 75.
    Kolkwitz B, Foeckerer T, Heinzel C, Zaeh MF, Brinksmeier E (2011) Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. Procedia Engineering 19:222–227CrossRefGoogle Scholar
  76. 76.
    Duscha M, Eser A, Klocke F, Broeckmann C, Wegner H, Bezold A (2011) Modeling and simulation of phase transformation during grinding. Adv Mater Res 223:743–753CrossRefGoogle Scholar
  77. 77.
    Salonitis K (2012) Efficient grinding processes: an energy efficiency point of view. In: Proceedings of the 10th international conference on manufacturing research (ICMR 09), Birmingham, pp 541–546Google Scholar
  78. 78.
    Foeckerer T, Zaeh MF, Zhang OB (2013) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf 56(1–2):223–237CrossRefGoogle Scholar
  79. 79.
    Luo SY, Wu SQ, Hsu FJ (2011) Analysis of the vitrified CBN wheels for the performance of grinding hardened steel. Adv Mater Res 264–265:937–942CrossRefGoogle Scholar
  80. 80.
    Zhang L, Ge PQ, Zhang JH, Zhang Q (2007) Study on hardness depth variation of different grinding zone in grind-hardening. Adv Mater Res 24–25:333–336CrossRefGoogle Scholar
  81. 81.
    Wang GC, Pan ZF, Jin Y, Zhang CL, Hua J, Liu D (2009) Finite element prediction of grind-hardening layer thickness. Key Eng Mater 416:253–258CrossRefGoogle Scholar
  82. 82.
    Ge PQ, Zhang Q, Zhang L, Zhang JH (2009) Prediction of the residual stress in grind-hardening with thermal-mechanical-phase transformation stress coupled analysis. Mater Sci Forum 626–627:345–350CrossRefGoogle Scholar
  83. 83.
    Nguyen T, Zhang LC (2010) Understanding the temperature field in plunge cylindrical grinding for grinding-hardening. Key Eng Mater 443:388–393CrossRefGoogle Scholar
  84. 84.
    Zhang Y, Ge PQ, Zhang L (2011) Numerical analysis of surface temperature in grind-hardening based on time variation heat flux. Mater Sci Forum 697–698:34–38CrossRefGoogle Scholar
  85. 85.
    Zhang Y, Ge PQ, Zhang L, Jiang JL (2012) The numerical simulation for thermal deformation in grinding hardening thin workpiece. Key Eng Mater 501:500–504CrossRefGoogle Scholar
  86. 86.
    Cheng W, Liang P (2013) Design of automatic control system of grinding zone temperature in grinding hardening. Key Eng Mater 589–590:723–728CrossRefGoogle Scholar
  87. 87.
    Liu JD, Yuan W, Xu ZL, Yu DM (2013) Numerical simulation of grinding-hardened layer’s depth in the reciprocating grinding of 45 steel. Appl Mech Mater 401–403:656–659Google Scholar
  88. 88.
    Wang GC, Hua CL, Zou JF, Pei HJ, Huang J (2014) Characteristic of residual stress distributions at workpiece surface in grind-hardening. Appl Mech Mater 494–495:624–627CrossRefGoogle Scholar
  89. 89.
    Zhang Y, Ge P, Be W (2015) Plane grind-hardening distortion analysis and the effect to grind-hardening layer. Int J Adv Manuf Technol (published online)Google Scholar
  90. 90.
    Tsirbas K, Mourtzis D, Chryssolouris G (1999) Grind-hardening modeling with the use of neural networks. In: Proceedings of the 5th international conference on advanced manufacturing systems and technology, Udine, Italy, pp 289–300Google Scholar
  91. 91.
    Stöhr R, Heinzel C (2002) Grind-hardening with CBN. Grind Abras Mag 06–07(2002):22–30Google Scholar
  92. 92.
    Liu ZQ, Xing A, Wang ZH (2006) A comparison study of surface hardening by grinding versus machining. Key Eng Mater 304–305:156–160CrossRefGoogle Scholar
  93. 93.
    Salonitis K, Tsoukantas G, Drakopoulos S, Stavropoulos P, Chryssolouris G (2006) Environmental impact assessment of grind-hardening process. In: Proceedings of the 13th CIRP international conference on life cycle engineering, Leuven, Belgium, pp 657–662Google Scholar
  94. 94.
    Wang GC, Liu JD, Li QF, Zhu YM, Pei HJ, Zhang JY (2007) Formation and control of burr in grind-hardening. Key Eng Mater 359–360:98–102Google Scholar
  95. 95.
    Pan ZF, Wang GC, Hua CL, Pei HJ (2009) Research and development of LM neural network prediction system for grind-hardening. Eng Mater 416:248–252Google Scholar
  96. 96.
    Zhang ZG, Ge PQ, Zhang L, Bi WB (2010) A study on critical heat flux in grind-hardening. Key Eng Mater 431–432:130–133CrossRefGoogle Scholar
  97. 97.
    Zhang L, Bi WB, Zhang RB (2010) An approximate solution of energy partition in grind-hardening process. Adv Mater Res 135:298–302CrossRefGoogle Scholar
  98. 98.
    Zhang JH, Zhang XJ, Yu GY, Gu ML, Ge PQ (2010) An investigation on the heat partitioning in grind-hardening. Adv Mater Res 97–101:2095–2098CrossRefGoogle Scholar
  99. 99.
    Zhang L, Xu XH, Yan CF (2010) Analysis of grinding parameters on hardness layer depth. Appl Mech Mater 37–38:131–134CrossRefGoogle Scholar
  100. 100.
    Liu JD, Zhuang JZ, Zhang XL, Xu ZL (2010) Influence of grinding parameters on the depth and uniformity of cylindrical grinding-hardened layer. Adv Mater Res 102–104:733–737Google Scholar
  101. 101.
    Salonitis K (2015) Energy efficiency assessment of grinding strategy. Int J Ene Sec Manag 9(1):20–37Google Scholar
  102. 102.
    Cheng W, Wang Gui Cheng, Liang P (2011) Automatic control technology of grinding zone temperature in grinding hardening. Adv Mater Res 381:48–51CrossRefGoogle Scholar
  103. 103.
    Reinhart G, Reinhardt S, Föckerer T, Zäh MF (2011) Comparison of the Resource Efficiency of alternative process chains for surface hardening. In: Globalized solutions for sustainability in manufacturing, pp 311–316Google Scholar
  104. 104.
    Klocke F, Roderburg A, Zeppenfeld C (2011) Design methodology for hybrid production processes. Procedia Engineering 9:417–430CrossRefGoogle Scholar
  105. 105.
    Xiu SC, Liu MH, Wei JH (2012) Analysis of microstructure of grinding strengthening layer in point grinding under small depth of cut conditions. Adv Mater Res 472–475:974–977CrossRefGoogle Scholar
  106. 106.
    Liu JD, Yuan W, Xiong JK, Xu ZL, Huang SW (2012) Study on the two-side direction burr in grinding-hardening machine based on orthogonal experimental method. Appl Mech Mater 217–219:1869–1873CrossRefGoogle Scholar
  107. 107.
    Liu JD, Yuan W, Xiong JK, Xu ZL (2013) Influence of chamfer size on the two-side direction burr formed in grinding-hardening machine. Adv Mater Res 645:392–395CrossRefGoogle Scholar
  108. 108.
    Liu JD, Yuan W, Xiong JK, Xu ZL (2013) Influence of grinding parameters and chamfer size on the grinding-hardened layer’s depth. Adv Mater Res 718–720:1569–1572CrossRefGoogle Scholar
  109. 109.
    Liu JD, Yuan W, Chen M (2013) Influence of workpiece’s size on the structure and performance of grinding-hardened layer. Key Eng Mater 579–580:56–60CrossRefGoogle Scholar
  110. 110.
    Liu M, Nguyen T, Zhang LC, Qiong W, Le Sun D (2014) On the profile and microstructure variations of grinding-induced hardening layer in a cylindrical workpiece. Adv Mater Res 1017:3–8CrossRefGoogle Scholar
  111. 111.
    Li H, Zou JF, Wang GC (2014) Prediction of thermal gradient in traverse cylindrical grind-hardening. Appl Mech Mater 590:280–283CrossRefGoogle Scholar
  112. 112.
    Liu JD, Zhuang JZ, Xu ZL (2014) Study on the grind-hardening of the loader clevis pin. Key Eng Mater 621:140–145CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Manufacturing Department, School of Aerospace, Transport and ManufacturingCranfield UniversityCranfieldBedfordshire, UK

Personalised recommendations