Hybrid Processes for Surface Modification and the Grind-Hardening Process

  • Konstantinos SalonitisEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter reviews the various available surface-hardening processes. The principles of surface modification are briefly described before presenting the most known surface hardening processes such as induction, high frequency, laser beam and flame hardening processes. Grind hardening as an alternative surface hardening process is presented.


Workpiece Surface Surface Hardening Hybrid Process Heat Treatment Process Induction Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lauwers B, Klocke F, Klink A, Tekkaya E, Neugebauer R, Mcintosh D (2014) Hybrid processes in manufacturing. CIRP Ann Manuf Technol 63(2):561–583CrossRefGoogle Scholar
  2. 2.
    Wick C, Veilleux RF (1985) Tool and manufacturing engineers handbook, vol 3—materials, finishing and coating. Society of Manufacturing Materials, MichiganGoogle Scholar
  3. 3.
    Klocke F, Roderburg A, Zeppenfeld C (2011) Design methodology for hybrid production processes. Procedia Eng 9:417–430CrossRefGoogle Scholar
  4. 4.
    Brinksmeier E, Brockhoff T (1996) Utilization of grinding heat as a new heat treatment process. CIRP Ann Manuf Technol 45(1):283–286CrossRefGoogle Scholar
  5. 5.
    Brockhoff T (1999) Grind-hardening: a comprehensive View. CIRP Ann Manuf Technol 48(1):255–260CrossRefGoogle Scholar
  6. 6.
    Salonitis K, Chryssolouris G (2007) Thermal analysis of grind-hardening process. Int J Manuf Technol Manage 12:72–92Google Scholar
  7. 7.
    Salonitis K, Chryssolouris G (2007) Cooling application in grind-hardening operations. Int J Adv Manuf Technol 33:285–297CrossRefGoogle Scholar
  8. 8.
    Salonitis K, Chrondros T, Chryssolouris G (2008) Grinding wheel effect on grind-hardening process. Int J Adv Manuf Technol 38:48–58CrossRefGoogle Scholar
  9. 9.
    Salonitis K, Stavropoulos P, Kolios A (2014) External grind-hardening forces modelling and experimentation. Int J Adv Manuf Technol 70:523–530CrossRefGoogle Scholar
  10. 10.
    Salonitis K, Kolios A (2015) Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 Steel. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-6912-x Google Scholar
  11. 11.
    Lechler J (2009) Beschreibung und Modellierung des Werkstoffverhaltens von presshaertbaren Bor-Manganstaehlen. Meisenbach VerlagGoogle Scholar
  12. 12.
    Meyer D, Brinksmeier E, Hoffmann F (2011) Surface hardening by cryogenic deep rolling. Procedia Eng 19:258–263CrossRefGoogle Scholar
  13. 13.
    Meyer D (2012) Cryogenic deep rolling—an energy based approach for enhanced cold surface hardening. CIRP Ann Manuf Technol 61(1):543–546CrossRefGoogle Scholar
  14. 14.
    Brinksmeier E, Garbrecht M, Meyer D (2008) Cold surface hardening. CIRP Ann Manuf Technol 57(1):541–544CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Manufacturing Department, School of Aerospace, Transport and ManufacturingCranfield UniversityCranfieldBedfordshire, UK

Personalised recommendations