Improving the Analysis of Context-Aware Information via Marker-Based Stigmergy and Differential Evolution

  • Mario G. C. A. Cimino
  • Alessandro Lazzeri
  • Gigliola Vaglini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)


We use the marker-based stigmergy, a mechanism that mediates animal-animal interactions, to perform context-aware information aggregation. In contrast with conventional knowledge-based models of aggregation, our model is data-driven and based on self-organization of information. This means that a functional structure called track appears and stays spontaneous at runtime when local dynamism in data occurs. The track is then processed by using similarity between current and reference tracks. Subsequently, the similarity value is handled by domain-dependent analytics, to discover meaningful events. Given the changeability of human-centered scenarios, the overall process is also adaptive, thanks to parametric optimization performed via differential evolution. The paper illustrates the proposed approach and discusses its characteristics through two real-world case studies.


Context-aware information Marker-based stigmergy Optimization Differential evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cimino, M.G.C.A., Lazzerini, B., Marcelloni, F., Ciaramella, A.: An Adaptive Rule-Based Approach for Managing Situation-Awareness. Expert Systems With Applications 39(12), 10796–10811 (2012)CrossRefGoogle Scholar
  2. 2.
    Feng, L., Apers, P.M.G., Jonker, W.: Towards context-aware data management for ambient intelligence. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 422–431. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ciaramella, A., Cimino, M.G.C.A., Marcelloni, F., Straccia, U.: Combining Fuzzy Logic and Semantic Web to Enable Situation-Awareness in Service Recommendation. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 31–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ciaramella, A., Cimino, M.G.C.A., Lazzerini, B., Marcelloni, F.: A Situation-Aware Resource Recommender Based on Fuzzy and Semantic Web Rules. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS) 18(4), 411–430 (2010)CrossRefGoogle Scholar
  5. 5.
    Vernon, D., Giorgio, M., Giulio, S.: A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolutionary Computation 11(2), 151–180 (2007)CrossRefGoogle Scholar
  6. 6.
    Avvenuti, M., Daniel, C., Cimino, M.G.C.A.: MARS, a Multi-Agent System for Assessing Rowers’ Coordination via Motion-Based Stigmergy. Sensors 13(9), 12218–12243 (2013)CrossRefGoogle Scholar
  7. 7.
    Van Dyke Parunak, H.: A survey of environments and mechanisms for human-human stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: GA, PSO, and DE. Industrial Engineering & Management Systems 11(3), 215–223 (2012)CrossRefGoogle Scholar
  9. 9.
    Bache, K., Lichman, M.: UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science(2013),
  10. 10.
    Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, A.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 485–492. ACM (2006)Google Scholar
  11. 11.
    Zaharie, D.: A comparative analysis of crossover variants in differential evolution. In: Proceedings of IMCSIT 2007, pp. 171–181 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mario G. C. A. Cimino
    • 1
  • Alessandro Lazzeri
    • 1
  • Gigliola Vaglini
    • 1
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations