Advertisement

Introduction

  • Valerio CapraroEmail author
  • Martino Lupini
Part of the Lecture Notes in Mathematics book series (LNM, volume 2136)

Abstract

Denote by B(H) the algebra of bounded linear operators on the Hilbert space H. Recall that B(H) is naturally endowed with an involution xx associating with an operator x its adjoint x.

Keywords

Group Algebra Nilpotent Element Strong Operator Topology Bernoulli Shift Idempotent Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    H. Abels, An example of a finitely presented solvable group, in Homological Group Theory (Proc. Sympos., Durham, 1977). London Mathematical Society Lecture Note Series, vol. 36 (Cambridge University Press, Cambridge, 1979), pp. 205–211Google Scholar
  2. 2.
    H. Ando, U. Haagerup, C. Winslow, Ultraproducts, QWEP von Neumann Algebras, and the Effros-Marechal Topology (2013). Preprint, available at arXiv:1306.0460v1
  3. 3.
    P. Ara, K.C. O’Meara, F. Perera, Stable finiteness of group rings in arbitrary characteristic. Adv. Math. 170(2), 224–238 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    E. Artin, Über die zerlegung definiter functionem in quadrate. Abh. Math. Sem. Univ. Hamburg 5, 85–89 (1927)MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Arzhantseva, Asymptotic approximations of finitely generated groups (2012). Preprint, available at http://www.mat.univie.ac.at/~arjantseva/Abs/asymptotic.pdf
  6. 6.
    G. Arzhantseva, L. Păunescu, Linear sofic groups and algebras (2012). Preprint, available at arXiv:1212.6780
  7. 7.
    G. Arzhantseva, L. Paunescu, Almost commuting permutations are near commuting permutations (October 2014). arXiv:1410.2626Google Scholar
  8. 8.
    J. Bannon, A non-residually solvable hyperlinear one-relator group. Proc. Am. Math. Soc. 139(4), 1409–1410 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Bannon, N. Noblett, A note on non-residually finite solvable hyperlinear groups. Involve 3, 345–347 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Baumslag, A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Aust. Math. Soc. Ser. A. Pure Math. Stat. 10, 497–498 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    G. Baumslag, D. Solitar, Some two-generator one-relator non-hopfian groups. Bull. Am. Math. Soc. 68(3), 199–201 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Bekka, P. de la Harpe, A. Valette, Kazhdan’s Property (T). New Mathematical Monographs, vol. 11 (Cambridge University Press, Cambridge, 2008)Google Scholar
  13. 13.
    I. Ben Yaacov, A. Berenstein, C.W. Henson, A. Usvyatsov, Model theory for metric structures, in Model Theory with Applications to Algebra and Analysis, vol. 2. London Mathematical Society Lecture Note Series, vol. 350 (Cambridge University Press, Cambridge, 2008), pp. 315–427Google Scholar
  14. 14.
    B. Blackadar, Theory of C -algebras and von Neumann algebras. Operator algebras and Non-commutative geometry, III, in Operator Algebras. Encyclopaedia of Mathematical Sciences, vol. 122 (Springer, Berlin, 2006)Google Scholar
  15. 15.
    L. Bowen, Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc. 23(1), 217–245 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    N.P. Brown, Connes’ embedding problem and Lance’s WEP. Int. Math. Rev. Not. 10, 501–510 (2004)CrossRefGoogle Scholar
  17. 17.
    N.P. Brown, Topological dynamical systems associated to II1-factors. Adv. Math. 227(4), 1665–1699 (2011) [With an appendix by Narutaka Ozawa]Google Scholar
  18. 18.
    N.P. Brown, V. Capraro, Groups associated to II1-factors. J. Funct. Anal. 264(2), 493–507 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Burger, A. Valette, Idempotents in complex group rings: theorems of Zalesskii and Bass revisited. J. Lie Theory 8(2), 219–228 (1998)MathSciNetzbMATHGoogle Scholar
  20. 20.
    V. Capraro, Cross norms on tensor product of universal C*-algebras and Kirchberg property. Mathoverflow question (2012). http://mathoverflow.net/questions/90686/cross-norms-on-tensor-product-of-universal-c-algebras-and-kirchberg-property
  21. 21.
    V. Capraro, Double ultrapower of the hyperfinite II1-factor. Mathoverflow question (2013). http://mathoverflow.net/questions/133437/double-ultrapower-of-the-hyperfinite-ii-1-factor
  22. 22.
    V. Capraro, T. Fritz, On the axiomatization of convex subsets of a Banach space. Proc. Am. Math. Soc. 141(6), 2127–2135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    V. Capraro, K. Morrison, Optimal strategies for a game on amenable semigroups. Int. J. Game Theory 42(4), 917–929 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    V. Capraro, L. Păunescu, Product between ultrafilters and applications to Connes’ embedding problem. J. Oper. Theory 68(1), 165–172 (2012)zbMATHGoogle Scholar
  25. 25.
    V. Capraro, F. Rădulescu, Cyclic Hilbert spaces and Connes’ embedding problem. Compl. Anal. Oper. Theory 7, 863–872 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    V. Capraro, M. Scarsini, Existence of equilibria in countable games: an algebraic approach. Games Econ. Behav. 79, 163–180 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    K. Carlson, E. Cheung, I. Farah, A. Gerhardt-Bourke, B. Hart, L. Mezuman, N. Sequeira, A. Sherman, Omitting types and AF algebras. Arch. Math. Log. 53(1–2), 157–169 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. Castilla, Artin-Lang property for analytic manifolds of dimension two. Math. Z. 217, 5–14 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A. Cayley, On the theory of groups, as depending on the symbolic equation θ n = 1, Part II. Philos. Mag. Ser. 4 7(47), 408–409 (1854)Google Scholar
  30. 30.
    T. Ceccherini-Silberstein, M. Coornaert, Injective linear cellular automata and sofic groups. Isr. J. Math. 161(1), 1–15 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups. Springer Monographs in Mathematics (Springer, Berlin, 2010)Google Scholar
  32. 32.
    T. Ceccherini-Silberstein, M. Coornaert, On sofic monoids. Semigroup Forum 89(3), 546–570 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    T. Ceccherini-Silberstein, M. Coornaert. On surjunctive monoids (September 2014). arXiv:1409.1340Google Scholar
  34. 34.
    C.C. Chang, H.J. Keisler, Model Theory (Princeton University Press, Princeton, 1966)zbMATHGoogle Scholar
  35. 35.
    A. Chirvasitu, Dedekind complete posets from sheaves on von Neumann algebras (2013). Preprint, available at arXiv:1307.8400v1
  36. 36.
    M.D. Choi, A Schwarz inequality for positive linear maps on C-algebras. Ill. J. Math. 18, 565–574 (1974)zbMATHGoogle Scholar
  37. 37.
    M.D. Choi, The full C-algebra of the free group on two generators. Pac. J. Math. 87, 41–48 (1980)CrossRefzbMATHGoogle Scholar
  38. 38.
    L. Ciobanu, D.F. Holt, S. Rees, Sofic groups: graph products and graphs of groups. Pac. J. Math. 271(1), 53–64 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    P.J. Cohen, The independence of the continuum hypothesis. Proc. Natl. Acad. Sci. USA 50, 1143–1148 (1963)CrossRefGoogle Scholar
  40. 40.
    P.J. Cohen. The independence of the continuum hypothesis, II. Proc. Natl. Acad. Sci. USA 51, 105–110 (1964)CrossRefGoogle Scholar
  41. 41.
    B. Collins, K. Dykema, Linearization of Connes’ embedding problem. N. Y. J. Math. 14, 617–641 (2008)MathSciNetzbMATHGoogle Scholar
  42. 42.
    B. Collins, K. Dykema, Free products of sofic groups with amalgamation over monotileably amenable groups. Münster J. Math. 4, 101–118 (2011)MathSciNetzbMATHGoogle Scholar
  43. 43.
    A. Connes, Classification of injective factors. Cases II 1, II , III λ, λ ≠ 1. Ann. Math. 2 104(1), 73–115 (1976)Google Scholar
  44. 44.
    A. Connes, V. Jones, Property T for von Neumann algebras. Bull. Lond. Math. Soc. 17(1), 57–62 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Y. Cornulier, A sofic group away from amenable groups. Math. Ann. 350(2), 269–275 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Y. de Cornulier, L. Guyot, W. Pitsch, On the isolated points in the space of groups. J. Algebra 307(1), 254–277 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Y. de Cornulier, Finitely presentable, non-hopfian groups with kazhdan’s property (t) and infinite outer automorphism group. Proc. Am. Math. Soc. 135(4), 951–959 (2007)CrossRefzbMATHGoogle Scholar
  48. 48.
    C.N. Delzell, A continuous, constructive solution to Hilbert’s 17th problem. Invent. Math. 76(3), 365–384 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L 2-invariants and the Atiyah conjecture. Commun. Pure Appl. Math. 56(7), 839–873 (2003) [Dedicated to the memory of Jürgen K. Moser]Google Scholar
  50. 50.
    H.A. Dye, On the geometry of projections in certain operator algebras. Ann. Math. 2 61, 73–89 (1955)MathSciNetCrossRefGoogle Scholar
  51. 51.
    E. Effros, Convergence of closed subsets in a topological space. Proc. Am. Math. Soc. 16, 929–931 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    E. Effros, Global structure in von Neumann algebras. Trans. Am. Math. Soc. 121, 434–454 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    G. Elek, E. Szabó, Sofic groups and direct finiteness. J. Algebra 280, 426–434 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    G. Elek, E. Szabó, Hyperlinearity, essentially free actions and L2-invariants. the sofic property. Math. Ann. 332(2), 421–441 (2005)Google Scholar
  55. 55.
    G. Elek, E. Szabó, On sofic groups. J. Group Theory 9(2), 161–171 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    G. Elek, E. Szabó, Sofic representations of amenable groups. Proc. Am. Math. Soc. 139, 4285–4291 (2011)CrossRefzbMATHGoogle Scholar
  57. 57.
    I. Farah, B. Hart, M. Lupini, L. Robert, A.P. Tikuisis, A. Vignati, W. Winter, Model theory of nuclear C*-algebras (in preparation). Available at http://www.math.yorku.ca/~ifarah/Ftp/2014b22-good.pdf
  58. 58.
    I. Farah, B. Hart, D. Sherman, Model theory for operator algebras III: elementary equivalence and II1 factors. Bull. Lond. Math. Soc. 46(3), 609–628 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    I. Farah, B. Hart, D. Sherman, Model theory for operator algebras I: stability.Bull. Lond. Math. Soc. 45 825–838 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    I. Farah, B. Hart, D. Sherman,Model theory for operator algebras II: model theory.Isr. J. Math. 201(1), 477–505 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    I. Farah, S. Shelah, A dichotomy for the number of ultrapowers. J. Math. Log. 10(1–2), 45–81 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    D. Farenick, V. Paulsen, Operator system quotients of matrix algebras and their tensor products. Math. Scand. III, 210–243 (2012)Google Scholar
  63. 63.
    D. Farenick, A.S. Kavruk, V.I. Paulsen, C*-algebras with the weak expectation property and a multivariable analogue of Ando’s theorem on the numerical radius. J. Oper. Theory 70(2), 573–590 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    D. Farenick, A.S. Kavruk, V.I. Paulsen, I.G. Todorov. Characterisations of the weak expectation property (2013). Available at arXiv:1307.1055
  65. 65.
    M. Fekete, Uber die verteilung der wurzeln bei gewissen algebraischen gleichungen mit. ganzzahligen koeffizienten. Math. Z. 17, 228–249 (1923)Google Scholar
  66. 66.
    T. Fritz, Tsirelson’s problem and Kirchberg’s conjecture. Rev. Math. Phys. 24(1250012), 67 pp. (2012)Google Scholar
  67. 67.
    W. Fulton, Algebraic Topology: A First Course (Springer, New York, 2008)Google Scholar
  68. 68.
    I. Gelfand, M. Neumark, On the imbedding of normed rings into the ring of operators in Hilbert space, in C*-Algebras: 1943–1993 (San Antonio, TX, 1993). Contemporary Mathematics, vol. 167 (American Mathematical Society, Providence, 1994), pp. 2–19 (Corrected reprint of the 1943 original [MR 5, 147])Google Scholar
  69. 69.
    M. Gerstenhaber, O.S. Rothaus, The solution of sets of equations in groups. Proc. Natl. Acad. Sci. USA 48, 1531–1533 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    L. Glebsky, L.M. Rivera, Sofic groups and profinite topology on free groups. J. Algebra 320, 3512–3518 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    L. Glebsky, L.M. Rivera, Almost solutions of equations in permutations. Taiwan. J. Math. 13(2A), 493–500 (2009)MathSciNetzbMATHGoogle Scholar
  72. 72.
    K. Gödel, The Consistency of the Continuum Hypothesis. Annals of Mathematics Studies, vol. 3 (Princeton University Press, Princeton, 1940)Google Scholar
  73. 73.
    I. Goldbring, B. Hart, A computability-theoretic reformulation of the Connes Embedding Problem (2013). Preprint, available at arXiv:1308.2638
  74. 74.
    D. Gondard, P. Ribenoim. Le 17eme probleme de Hilbert pour les matrices. Bull. Sci. Math. 98, 49–56 (1974)MathSciNetzbMATHGoogle Scholar
  75. 75.
    E.I. Gordon, A.M. Vershik, Groups that are locally embeddable in the class of finite groups. St. Petersburg Math. J. 9, 49–67 (1998)MathSciNetGoogle Scholar
  76. 76.
    W. Gottschalk, Some general dynamical notions, in Recent Advances in Topological Dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund). Lecture Notes in Mathematics, vol. 318 (Springer, Berlin, 1973), pp. 120–125Google Scholar
  77. 77.
    F.P. Greenleaf, Invariant Means on Topological Groups. Van Nostrand Mathematical Studies, vol. 16 (Van Nostrand-Reinhold Co, New York, 1969)Google Scholar
  78. 78.
    M. Gromov, Hyperbolic groups, in Essays in Group Theory. Mathematical Science Research Institute Publications, vol. 8 (Springer, New York, 1987), pp. 75–263Google Scholar
  79. 79.
    M. Gromov, Endomorphism in symbolic algebraic varieties. J. Eur. Math. Soc. 1(2), 109–197 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    K.W. Gruenberg, Residual properties of infinite soluble groups. Proc. Lond. Math. Soc. Third Ser. 7, 29–62 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    A. Guichardet, Tensor products of C-algebras. Dokl. Akad. Nauk SSSR 160, 986–989 (1965)MathSciNetGoogle Scholar
  82. 82.
    U. Haagerup, C. Winslow, The Effros-Marechal topology in the space of von Neumann algebras. Am. J. Math. 120, 667–617 (1998)MathSciNetGoogle Scholar
  83. 83.
    U. Haagerup, C. Winslow, The Effros-Marechal topology in the space of von Neumann algebras, II. J. Funct. Anal. 171, 401–431 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    D. Hadwin, A noncommutative moment problem. Proc. Am. Math. Soc. 129(6), 1785–1791 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    G. Higman, A finitely generated infinite simple group. J. Lond. Math. Soc. 26, 61–64 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    C.J. Hillar, J. Nie, An elementary and constructive solution to hilbert’s 17th problem for matrices. Proc. Am. Math. Soc. 136, 73–76 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
  88. 88.
    M. Junge, M. Navascues, C. Palazuelos, D. Perez-Garcia, V.B. Scholz, R.F. Werner, Connes’ embedding problem and Tsirelson’s problem. J. Math. Phys. 52(012102), 12 pp. (2011)Google Scholar
  89. 89.
    K. Juschenko, S. Popovych, Algebraic reformulation of Connes’ embedding problem and the free group algebra. Isr. J. Math. 181, 305–315 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    D.A. Kazhdan, On the connection of the dual space of a group with the structure of its closed subgroups. Akademija Nauk SSSR. Funkcional∖cprime nyi Analiz i ego Priloenija 1, 71–74 (1967)Google Scholar
  91. 91.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. I. Graduate Studies in Mathematics, vol. 15 (American Mathematical Society, Providence, 1997) [Elementary theory, Reprint of the 1983 original]Google Scholar
  92. 92.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. II. Graduate Studies in Mathematics, vol. 16 (American Mathematical Society, Providence, 1997)Google Scholar
  93. 93.
    I. Kaplansky, Fields and Rings, 2nd edn. Chicago Lectures in Mathematics (The University of Chicago Press, Chicago, 1972)Google Scholar
  94. 94.
    A. Kar, N. Nikolov, A non-LEA sofic group (2014). arXiv:1405.1620Google Scholar
  95. 95.
    A.S. Kavruk, Nuclearity related properties in operator systems (2011). Preprint, available at arXiv:1107.2133
  96. 96.
    A.S. Kavruk, The weak expectation property and riesz interpolation (2012). Available at arXiv:1201.5414
  97. 97.
    A.S. Kavruk, V.I. Paulsen, I.G. Todorov, M. Tomforde, Tensor products of operator systems. J. Funct. Anal. 261(2), 267–299 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroup. Funct. Anal. Appl. 1, 63–65 (1967)CrossRefzbMATHGoogle Scholar
  99. 99.
    D. Kerr, H. Li, Entropy and the variational principle for actions of sofic groups. Invent. Math. 186(3), 501–558 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    D. Kerr, H. Li, Soficity, amenability, and dynamical entropy. Am. J. Math. 135(3), 721–761 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    E. Kirchberg, On semisplit extensions, tensor products and exactness of group C-algebras. Invent. Math. 112, 449–489 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    E. Kirchberg, Discrete groups with Kazhdan’s property T and factorization property are residually finite. Math. Ann. 299, 551–563 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    I. Klep, M. Schweighofer, Connes’ embedding problem and sums of hermitian squares. Adv. Math. 217, 1816–1837 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    P.H. Kropholler, Baumslag-solitar groups and some other groups of cohomological dimension two. Commentarii Mathematici Helvetici 65(4), 547–558 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    E.C. Lance, On nuclear C-algebras. J. Funct. Anal. 12, 157–176 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  106. 106.
    E. Lindenstrauss, B. Weiss, Mean topological dimension. Isr. J. Math. 115(1), 1–24 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    T.A. Loring, Lifting Solutions to Perturbing Problems in C -Algebras. Fields Institute Monographs, vol. 8 (American Mathematical Society, Providence, 1997)Google Scholar
  108. 108.
    J. Łośm, Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres, in Mathematical Interpretation of Formal Systems (North-Holland, Amsterdam, 1955), pp. 98–113Google Scholar
  109. 109.
    P. Lucke, S. Thomas, Automorphism groups of ultraproducts of finite symmetric groups. Commun. Algebra 39, 3625–3630 (2011)MathSciNetCrossRefGoogle Scholar
  110. 110.
    M. Lupini, Class-preserving automorphisms of universal hyperlinear groups (2013). Available at arXiv:1308.3737
  111. 111.
    M. Lupini, Logic for metric structures and the number of universal sofic and hyperlinear groups. Proc. Am. Math. Soc. 142(10), 3635–3648 (2013)MathSciNetCrossRefGoogle Scholar
  112. 112.
    O. Marechal, Topologie et structure borelienne sur l’ensemble des algebres de von Neumann. Compt. Rend. Acad. Sc. Paris 276, 847–850 (1973)MathSciNetzbMATHGoogle Scholar
  113. 113.
    S. Meskin, Nonresidually finite one-relator groups. Trans. Am. Math. Soc. 164, 105–114 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  114. 114.
    R. Moreno, L.M. Rivera, Blocks in cycles and k-commuting permutations (2013). arXiv:1306.5708Google Scholar
  115. 115.
    F.J. Murray, J. von Neumann, On rings of operators, IV. Ann. Math. 2 44, 716–808 (1943)CrossRefGoogle Scholar
  116. 116.
    H. Neumann, Generalized free products with amalgamated subgroups. Am. J. Math. 70, 590–625 (1948)CrossRefzbMATHGoogle Scholar
  117. 117.
    D. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    N. Ozawa, About the QWEP conjecture. Int. J. Math. 15(5), 501–530 (2004)CrossRefzbMATHGoogle Scholar
  119. 119.
    N. Ozawa, There is no separable universal II1-factor. Proc. Am. Math. Soc. 132(2), 487–490 (electronic) (2004)Google Scholar
  120. 120.
    N. Ozawa, About the Connes embedding conjecture. Jpn. J. Math. 8(1), 147–183 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  121. 121.
    N. Ozawa, Tsirelson’s problem and asymptotically commuting unitary matrices. J. Math. Phys. 54(032202), 8 pp. (2013)Google Scholar
  122. 122.
    A.L.T. Paterson, Amenability. Mathematical Surveys and Monographs, vol. 29 (American Mathematical Society, Providence, 1988)Google Scholar
  123. 123.
    L. Păunescu, On sofic actions and equivalence relations. J. Funct. Anal. 261(9), 2461–2485 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  124. 124.
    L. Păunescu, All automorphisms of the universal sofic group are class preserving (2013). Preprint, available at arXiv:1306.3469
  125. 125.
    V. Pestov, Hyperlinear and sofic groups: a brief guide. Bull. Symb. Log. 14, 449–480 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  126. 126.
    V. Pestov, A. Kwiatkowska, An introduction to Hyperlinear and Sofic Groups. London Mathematical Society Lecture Notes, vol. 406 (Cambridge University Press, Cambridge, 2012), pp. 145–186Google Scholar
  127. 127.
    S. Popa, Correspondences. INCREST preprint 56 (1986). Available at http://www.math.ucla.edu/~popa/popa-correspondences.pdf
  128. 128.
    R.T. Powers, E. Størmer, Free states of the canonical anticommutation relations. Commun. Math. Phys. 16, 1–33 (1970)CrossRefzbMATHGoogle Scholar
  129. 129.
    C. Procesi, M. Schacher, A non commutative real Nullstellensatz and Hilbert’s 17th problem. Ann. Math. 104, 395–406 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  130. 130.
    F. Rădulescu, A non-commutative, analytic version of Hilbert’s 17th problem in type II1 von Neumann algebras, in Von Neumann Algebras in Sibiu. Theta Seriers in Advanced Mathematics, vol. 10 (Theta, Bucharest, 2008), pp. 93–101Google Scholar
  131. 131.
    F. Rădulescu, The von Neumann algebra of the non-residually finite Baumslag group \(\left \langle a,b\left \vert ab^{3}a^{-1} = b^{2}\right.\right \rangle\) embeds into R ω, in Hot Topics in Operator Theory. Theta Series in Advanced Mathematics (Theta, Bucharest, 2008), pp. 173–185Google Scholar
  132. 132.
    D. Romik, Stirling’s approximation for n!: the ultimate short proof? Am. Math. Mon. 107(6), 556–557 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  133. 133.
    J.M. Ruiz, On Hilbert’s 17th problem and real Nullstellensatz for global analytic functions. Math. Z. 190, 447–454 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  134. 134.
    I.E. Segal, Irreducible representations of operator algebras. Bull. Am. Math. Soc. 53, 73–88 (1947)CrossRefzbMATHGoogle Scholar
  135. 135.
    S. Shelah, Classification Theory and the Number of Nonisomorphic Models, 2nd edn. Studies in Logic and the Foundations of Mathematics, vol. 92. (North-Holland, Amsterdam, 1990)Google Scholar
  136. 136.
    S. Shelah, Vive la difference, III. Isr. J. Math. 166, 61–96 (2008)CrossRefzbMATHGoogle Scholar
  137. 137.
    D. Sherman, Notes on automorphisms of ultrapowers of II1 factors. Stud. Math. 195(3), 201–217 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  138. 138.
    M.H. Stone, Postulates of barycentric calculus. Ann. Mat. Pura Appl. 29(1), 25–30 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  139. 139.
    M. Takesaki, On the cross-norm of the direct product of C-algebras. Tohoku Math. J. 16, 111–122 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  140. 140.
    M. Takesaki, Theory of Operator Algebras I (Springer, Berlin, 2001)Google Scholar
  141. 141.
    T. Tao, Finite subsets of groups with no finite models. Post in the blog “What’s new”(2008). Available at https://terrytao.wordpress.com/2008/10/06/finite-subsets-of-groups-with-no-finite-models/
  142. 142.
    A. Thom, Sofic groups and Diophantine approximation. Commun. Pure Appl. Math. 61, 1155–1171 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  143. 143.
    A. Thom, Examples of hyperlinear groups without factorization property. Groups Geom. Dyn. 4(1), 195–208 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  144. 144.
    A. Thom, About the metric approximation of Higman’s group. J. Group Theory 15(2), 301–310 (2013)MathSciNetGoogle Scholar
  145. 145.
    S. Thomas, On the number of universal sofic groups. Proc. Am. Math. Soc. 138(7), 2585–2590 (2010)CrossRefzbMATHGoogle Scholar
  146. 146.
    T. Turumaru, On the direct-product of operator algebras, II. Tôhoku Math. J. 2 5, 1–7 (1953)MathSciNetCrossRefGoogle Scholar
  147. 147.
    D. Voiculescu, Symmetries of some reduced free product C*-algebras, in Operator Algebras and Their Connections with Topology and Ergodic Theory, ed. by Springer. Lecture Notes in Mathematics, vol. 1132 (Springer, Berlin, 1985), pp. 556–588Google Scholar
  148. 148.
    D. Voiculescu, The analogues of entropy and of Fischer’s information measure in free probability theory, II. Invent. Math. 118, 411–440 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  149. 149.
    J. von Neumann, Zur allgemeinen theorie des masses. Fundam. Math. 12, 73–116 (1929)Google Scholar
  150. 150.
    B. Weiss, Sofic groups and dynamical systems. Ergodic theory and harmonic analysis (Mumbai, 1999) Sankhyā Ser. A 62(3), 350–359 (2000)Google Scholar
  151. 151.
    A. Zalesskiï, On a problem of Kaplansky. Dokl. Akad. Nauk SSSR 203, 477–495 (1972)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands
  2. 2.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations