Skip to main content

Image Segmentation in Liquid Argon Time Projection Chamber Detector

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Included in the following conference series:

Abstract

The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle’s track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, C., et al.: The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab. Journal of Instrumentation 7 (2012)

    Google Scholar 

  2. Autiero, D., et al.: Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects. Journal of Cosmology and Astroparticle Physics 11 (2007)

    Google Scholar 

  3. Bennieston, A.J.: Reconstruction techniques for fine-grained neutrino detectors, Doctoral dissertation, University of Warwick (2013)

    Google Scholar 

  4. Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.A.: Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 142–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649 (2012)

    Google Scholar 

  7. Ferrari, A., Sala, P.R., Fasso, A., Ranft, J.: FLUKA: a multi-particle transport code, CERN-2005-10, INFN TC 05 11, SLAC-R-773 (2005)

    Google Scholar 

  8. Graczyk, K.M., Płonski, P., Sulej, R.: Neural network parameterizations of electromagnetic nucleon form-factors. Journal of High Energy Physics 2010, 1–30 (2010)

    Article  Google Scholar 

  9. Grycuk, R., Gabryel, M., Korytkowski, M., Romanowski, J., Scherer, R.: Improved Digital Image Segmentation Based on Stereo Vision and Mean Shift Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 433–443. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Hastie, T., Friedman, J., Tibshirani, R.: The elements of statistical learning. Springer (2009)

    Google Scholar 

  11. The ICARUS Collaboration, Design, construction and tests of the ICARUS T600 detector, Nuclear Instruments and Methods in Physics Research, vol. A527 (2004)

    Google Scholar 

  12. The ICARUS Collaboration, The trigger system of the ICARUS experiment for the CNGS beam, Journal of Instrumentation, vol. 9 (2014)

    Google Scholar 

  13. Kostadinov, D., Voloshynovskiy, S., Ferdowsi, S., Diephuis, M., Scherer, R.: Robust Face Recognition by Group Sparse Representation That Uses Samples from List of Subjects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 616–626. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. The LBNE Collaboration, The Long-Baseline Neutrino Experiment - Exploring Fundamental Symmetries of the Universe, FERMILAB-PUB-14-022, arXiv:1307.7335 (2014)

    Google Scholar 

  15. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  16. The MicroBooNE Collaboration, Proposal for a New Experiment Using the Booster and NuMI Neutrino Beamlines: MicroBooNE, FERMILAB-PROPOSAL-0974 (2007)

    Google Scholar 

  17. Morgan, B.: Interest Point Detection for Reconstruction in High Granularity Tracking Detectors. Journal of Instrumentation 5 (2010)

    Google Scholar 

  18. Najgebauer, P., Nowak, T., Romanowski, J., Gabryel, M., Korytkowski, M., Scherer, R.: Content-Based Image Retrieval by Dictionary of Local Feature Descriptors. In: Proceedings of the International Joint Conference on Neural Networks (2014)

    Google Scholar 

  19. Nowak, T., Gabryel, M., Korytkowski, M., Scherer, R.: Comparing Images Based on Histograms of Local Interest Points. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 423–432. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Płoński, P., Zaremba, K.: Visualizing Random Forest with Self-Organising Map. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 63–71. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Stefan, D., Sulej, R., et al.: Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector. Advances in High Energy Physics, 2013

    Google Scholar 

  22. Sulej, R.: Sterile neutrino search with the ICARUS T600 in the CNGS beam. In: XV Workshop on Neutrino Telescopes, PoS Neutel (2013)

    Google Scholar 

  23. Rubbia, C.: The Liquid-Argon Time Projection Chamber: a new concept for neutrino detectors, CERN Report (1977)

    Google Scholar 

  24. Rudzki, M.: Vessel detection method based on eigenvalues of the hessian matrix and its applicability to airway tree segmentation. In: Proceedings of the 11th International PhD Workshop OWD, pp. 100–105 (2009)

    Google Scholar 

  25. Wayne, I., Pat, L.: Induction of One-Level Decision Trees. In: Proceedings of the Ninth International Conference on Machine Learning (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Płoński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Płoński, P., Stefan, D., Sulej, R., Zaremba, K. (2015). Image Segmentation in Liquid Argon Time Projection Chamber Detector. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics