Skip to main content

CNC Milling Tool Head Imbalance Prediction Using Computational Intelligence Methods

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Abstract

In this paper, a mechanical imbalance prediction problem for a milling tool heads used in Computer Numerical Control (CNC) machines was studied. Four classes of the head imbalance were examined. The data set included 27334 records with 14 features in the time and frequency domains. The feature selection procedure was applied in order to extract the most significant attributes. Only 3 out of 14 attributes were selected and utilized for the representation of each signal. Seven computational intelligence methods were applied in the prediction task: K–Means clustering algorithm, probabilistic neural network, single decision tree, boosted decision trees, multilayer perceptron, radial basis function neural network and support vector machine. The accuracy, sensitivity and specificity were computed in order to asses the performance of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mączka, T., Żabiński, T.: Platform for Intelligent Manufacturing Systems with elements of knowledge discovery. In: Manufacturing System, pp. 183–204. InTech, Croatia (2012)

    Google Scholar 

  2. Żabiński, T., Mączka, T., Kluska, J., Kusy, M., Hajduk, Z., Prucnal, S.: Failures Prediction in the Cold Forging Process Using Machine Learning Methods. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS(LNAI), vol. 8467, pp. 622–633. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. IPC–BECKHOFF New Automation Technology, http://www.beckhoff.com/ipc

  4. Żabiński, T., Mączka, T.: Implementation of Human-System Interface for Manufacturing Organizations. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T. (eds.) Human – Computer Systems Interaction. AISC, Part I, vol. 98, pp. 13–31. Springer, Heidelberg (2012)

    Google Scholar 

  5. TwinCAT 3, http://www.beckhoff.com/english/twincat/twincat-3.htm

  6. Matlab Coder, http://www.mathworks.com/products/matlab-coder/

  7. Simulink Coder, http://www.mathworks.com/products/simulink-coder/

  8. Shen, C., Wang, G., Wang, S., Liu, G.: The Imbalance Source of Spindle-Tool System and Influence to Machine Vibration Characteristics. In: Second International Conference on Digital Manufacturing & Automation (2011)

    Google Scholar 

  9. Smith, G.T.: Cutting tool technology: industrial handbook. Springer-Verlag London Limited (2008)

    Google Scholar 

  10. Haas VM-3 CNC machine, http://int.haascnc.com

  11. HAIMER Tool Dynamic (2009), www.haimer.com

  12. ISO 1940–1:2003 Mechanical vibration - Balance quality requirements for rotors in a constant (rigid) state - Part 1: Specification and verification of balance tolerances

    Google Scholar 

  13. Wu, X., Kumar, V., Quinlan, J.R., et al.: Top 10 algorithms in data mining. Knowledge Information Systems 14, 1–37 (2008)

    Article  Google Scholar 

  14. Sherrod, P.H.: DTREG predictive modelling software, http://www.dtreg.com

  15. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Journal of the Royal Statistical Society - Series C (Applied Statistics) 1, 100–108 (1979)

    Google Scholar 

  16. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)

    Article  Google Scholar 

  17. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth, Belmont (1984)

    Google Scholar 

  18. Friedman, J.H.: Greedy Function Approximation: A Gradient Boosting Machine. IMS Reitz Lecture (1999)

    Google Scholar 

  19. Rumelhart, D., McClelland, J.: Parallel Distributed Processing. MIT Press, Cambridge (1986)

    Google Scholar 

  20. Chen, S., Wang, X., Harris, C.J.: Experiments with repeating weighted boosting search for optimization in signal processing applications. IEEE Trans. Systems Man Cybernetics Part B Cybernetics 35, 682–693 (2005)

    Article  Google Scholar 

  21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Żabiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Żabiński, T. et al. (2015). CNC Milling Tool Head Imbalance Prediction Using Computational Intelligence Methods. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics