Skip to main content

Innovative Types and Abilities of Neural Networks Based on Associative Mechanisms and a New Associative Model of Neurons

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9119)

Abstract

This paper presents a new concept of representation of data and their relations in neural networks which allows to automatically associate, reproduce them, and generalize about them. It demonstrates an innovative way of developing emergent neural representation of knowledge using a new kind of neural networks whose structure is automatically constructed and parameters are automatically computed on the basis of plastic mechanisms implemented in a new associative model of neurons - called as-neurons. Inspired by the plastic mechanisms commonly occurring in a human brain, this model allows to quickly create associations and establish weighted connections between neural representations of data, their classes, and sequences. As-neurons are able to automatically interconnect representing similar or sequential data. This contribution describes generalized formulas for quick analytical computation of the structure and parameters of ANAKG neural graphs for representing and recalling of training sequences of objects.

Keywords

  • Associative mechanisms
  • As-neurons
  • ANAKG neural graphs
  • Knowledge engineering
  • Knowledge representation
  • Artificial neural associative systems
  • Associative neural networks
  • Emergent cognitive systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-19324-3_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19324-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R., Lebiere, C.: The Newell test for a theory of cognition. Behavioral and Brain Science 26, 587–637 (2003)

    Google Scholar 

  2. Arik, S.: Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays. IEEE Transactions on Neural Networks, 580–586 (2005), doi:10.1109/TNN.2005.844910

    Google Scholar 

  3. Borowik, B.: Associative Memories. MIKOM, Warsaw (2002)

    Google Scholar 

  4. Cassimatis, N.L.: Adaptive Algorithmic Hybrids for Human-Level Artificial Intelligence (2007)

    Google Scholar 

  5. Dudek-Dyduch, E., Tadeusiewicz, R., Horzyk, A.: Neural Network Adaptation Process Effectiveness Dependent of Constant Training Data Availability. Neurocomputing 72, 3138–3149 (2009)

    CrossRef  Google Scholar 

  6. Dudek-Dyduch, E., Kucharska, E., Dutkiewicz, L., Rączka, K.: ALMM solver - a tool for optimization problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 328–338. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  7. Duch, W.: Towards comprehensive foundations of computational intelligence. In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence. SCI, vol. 63, pp. 261–316. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Duch, W.: Brain-inspired conscious computing architecture. Journal of Mind and Behaviour 26, 1–22 (2005)

    Google Scholar 

  9. Hawkins, J., Blakeslee, S.: The Essence of Intelligence. One Press, Helion (2006)

    Google Scholar 

  10. Hecht-Nielsen, R.: Confabulation Theory: The Mechanism of Thought. Springer (2007)

    Google Scholar 

  11. Horzyk, A.: How Does Generalization and Creativity Come into Being in Neural Associative Systems and How Does It Form Human-Like Knowledge? Neurocomputing, 238–257 (2014), doi:10.1016/j.neucom.2014.04.046

    Google Scholar 

  12. Horzyk, A.: Artificial Associative Systems and Associative Artificial Intelligence, pp. 1–276. EXIT, Warsaw (2013)

    Google Scholar 

  13. Horzyk, A.: Information Freedom and Associative Artificial Intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 81–89. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  14. Horzyk, A: Human-Like Knowledge Engineering, Generalization and Creativity in Artificial Neural Associative Systems. AISC 11156. Springer (2015)

    Google Scholar 

  15. Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266 (2000)

    CrossRef  MathSciNet  Google Scholar 

  16. Kalat, J.W.: Biological grounds of psychology. PWN, Warsaw (2006)

    Google Scholar 

  17. Kucharska, E., Dudek-Dyduch, E.: Extended learning method for designation of co-operation. In: Nguyen, N.T. (ed.) TCCI XIV 2014. LNCS, vol. 8615, pp. 136–157. Springer, Heidelberg (2014)

    Google Scholar 

  18. Larose, D.T.: Discovering knowledge from data. Introduction to Data Mining. PWN, Warsaw (2006)

    Google Scholar 

  19. Longstaff, A.: Neurobiology. PWN, Warsaw (2006)

    Google Scholar 

  20. Nowak, J.Z., Zawilska, J.B.: Receptors and Mechanisms of Signal Transfer. PWN, Warsaw (2004)

    Google Scholar 

  21. Rutkowski, L.: Techniques and Methods of Artificial Intelligence. PWN, Warsaw (2012)

    Google Scholar 

  22. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. on Neural Networks and Learning Systems (2014)

    Google Scholar 

  23. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision trees for mining data streams. Information Sciences 266, 1–15 (2014)

    CrossRef  Google Scholar 

  24. Rutkowski, L., Jaworski, M., Duda, P., Pietruczuk, L.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. on Knowledge and Data Engineering 26(1), 108–119 (2014)

    CrossRef  Google Scholar 

  25. Tadeusiewicz, R., Rowinski, T.: Computer science and psychology in information society, AGH (2011)

    Google Scholar 

  26. Tadeusiewicz, R.: New Trends in Neurocybernetics. Computer Methods in Materials Science 10(1), 1–7 (2010)

    Google Scholar 

  27. Tadeusiewicz, R., Figura, I.: Phenomenon of Tolerance to Damage in Artificial Neural Networks. Computer Methods in Material Science 11(4), 501–513 (2011)

    Google Scholar 

  28. Tadeusiewicz, R.: Neural Networks as Computational Tool with Interesting Psychological Applications. In: Computer Science and Psychology in Information Society, pp. 49–101. AGH Printing House (2011)

    Google Scholar 

  29. Tadeusiewicz, R., Korbicz, J., Rutkowski, L., Duch, W. (eds.): Neural Networks in Biomedical Engineering. Monograph: Biomedical Engineering – Basics and Applications, vol. 9. Exit, Warsaw (2013)

    Google Scholar 

  30. Tetko, I.V.: Associative Neural Network. Neural Proc. Lett. 16(2), 187–199 (2002)

    CrossRef  Google Scholar 

  31. Wang, P.: Rigid flexibility. The Logic of Intelligence. Springer (2006)

    Google Scholar 

  32. Sha, Z., Li, X.: Mining local association patterns from spatial dataset. In: 7th Int. Conf. on Fuzzy Systems and Knowledge Discovery (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Horzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Horzyk, A. (2015). Innovative Types and Abilities of Neural Networks Based on Associative Mechanisms and a New Associative Model of Neurons. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)