Advertisement

On the Tuning of Complex Dynamics Embedded into Differential Evolution

  • Roman SenkerikEmail author
  • Michal Pluhacek
  • Ivan Zelinka
  • Donald Davendra
  • Zuzana Kominkova Oplatkova
  • Roman Jasek
Conference paper
  • 1.5k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9119)

Abstract

This research deals with the hybridization of the two softcomputing fields, which are chaos theory and evolutionary computation. This paper aims on the experimental investigations on the chaos-driven evolutionary algorithm Differential Evolution (DE) concept. This research represents the continuation of the satisfactory results obtained by means of chaos embedded (driven) DE, which utilizes the chaotic dynamics in the place of pseudorandom number generators This work is aimed at the tuning of the complex chaotic dynamics directly injected into the DE. To be more precise, this research investigates the influence of different parameter settings for discrete chaotic systems to the performance of DE. Repeated simulations were performed on the IEEE CEC 13 benchmark functions set in dimension of 30. Finally, the obtained results are compared with canonical DE and jDE.

Keywords

Differential Evolution Complex dynamics Deterministic chaos Dissipative system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd. (1999)Google Scholar
  2. 2.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)CrossRefGoogle Scholar
  3. 3.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  4. 4.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1-2), 61–106 (2010)CrossRefGoogle Scholar
  5. 5.
    Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential evolution. Information Sciences 181(12), 2488–2511 (2011)CrossRefGoogle Scholar
  6. 6.
    Neri, F., Iacca, G., Mininno, E.: Disturbed Exploitation compact Differential Evolution for limited memory optimization problems. Information Sciences 181(12), 2469–2487 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Iacca, G., Caraffini, F., Neri, F.: Compact Differential Evolution Light: High Performance Despite Limited Memory Requirement and Modest Computational Overhead. J. Comput. Sci. Technol. 27(5), 1056–1076 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aydin, I., Karakose, M., Akin, E.: Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Systems with Applications 37(7), 5285–5294 (2010)CrossRefGoogle Scholar
  9. 9.
    Liang, W., Zhang, L., Wang, M.: The chaos differential evolution optimization algorithm and its application to support vector regression machine. Journal of Software 6(7), 1297–1304 (2011)CrossRefGoogle Scholar
  10. 10.
    Zhenyu, G., Bo, C., Min, Y., Binggang, C.: Self-Adaptive Chaos Differential Evolution. In: Jiao, L., Wang, L., Gao, X.-B., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 972–975. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    dos Santos Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch. Chaos, Solitons & Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  13. 13.
    Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), April 16-19, pp. 119–126 (2013)Google Scholar
  14. 14.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66(2), 122–134 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2444–2449 (2013)Google Scholar
  16. 16.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation 18(1), 89–98 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Senkerik, R., Pluhacek, M., Zelinka, I., Oplatkova, Z.K., Vala, R., Jasek, R.: Performance of Chaos Driven Differential Evolution on Shifted Benchmark Functions Set. In: Herrero, A., et al. (eds.) International Joint Conference SOCO 2013-CISIS 2013-ICEUTE 2013. AISC, vol. 239, pp. 41–50. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Kominkova Oplatkova, Z.: On the Differential Evolution Driven by Selected Discrete Chaotic Systems: Extended Study. In: 19th International Conference on Soft Computing, MENDEL 2013, pp. 137–144 (2013)Google Scholar
  19. 19.
    Lozi, R.: Engineering of Mathematical Chaotic Circuits. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 17–29. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar
  22. 22.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)CrossRefGoogle Scholar
  23. 23.
    Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization, Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roman Senkerik
    • 1
    Email author
  • Michal Pluhacek
    • 1
  • Ivan Zelinka
    • 2
  • Donald Davendra
    • 2
  • Zuzana Kominkova Oplatkova
    • 1
  • Roman Jasek
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstravaCzech Republic

Personalised recommendations