Advertisement

Localized Amyloidoses and Amyloidoses Associated with Aging Outside the Central Nervous System

  • Per WestermarkEmail author
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

The non-cerebral localized amyloid forms constitute an increasingly big group of highly varying biochemical nature. Localized AL and the very rare AH amyloidoses often form tumors that can be mistaken for malignant neoplasms. Most other localized amyloids are associated with aging or occur in some specific, polypeptide hormone-producing tumors, particularly in the pancreas and in the thyroid gland. Most of these forms are believed to be innocent with the known exception amyloid derived from islet amyloid polypeptide (IAPP). There is increasing evidence that IAPP, either as mature amyloid fibrils or as prefibrillar aggregates, is toxic to islet β-cells and plays an important role in the pathogenesis of type 2 diabetes. Wild-type transthyretin (senile systemic) amyloidosis is also included in this chapter. This under-appreciated disease is the most prevalent of all systemic amyloidoses and most commonly manifests itself as progressive cardiomyopathy in elderly men. In wild-type transthyretin amyloidosis, amyloid deposits occur in other organs as well including lungs and different ligaments, and for the observant pathologist it is not rare to detect small deposits in arteries in prostatic biopsies.

Keywords

Immunoglobulin, polypeptide hormone Atrial natriuretic peptide Insulin Calcitonin Islet amyloid polypeptide Galectin-7 Transthyretin Aging Diabetes mellitus Senile systemic amyloidosis 

References

  1. 1.
    Rochet J-C, Lansbury PTJ. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol. 2000;10:60–8.PubMedGoogle Scholar
  2. 2.
    Rubinow A, Celli BR, Cohen AS, Rigden BG, Brody JS. Localized amyloidosis of the lower respiratory tract. Am Rew Resp Dis. 1978;118:603–11.Google Scholar
  3. 3.
    Utz JP, Swensen SJ, Gertz MA. Pulmonary amyloidosis. The Mayo clinic experience from 1980 to 1993. Ann Intern Med. 1996;124:407–13.PubMedGoogle Scholar
  4. 4.
    Monge M, Chauveau D, Cordonnier C, Noël LH, Presne C, Makdassi R, Jauréguy M, Lecaque C, Renou M, Grünfeld JP, et al. Localized amyloidosis of the genitourinary tract: report of 5 new cases and review of the literature. Medicine (Baltimore). 2011;90:212–22.Google Scholar
  5. 5.
    Linke RP, Gerhard L, Lottspeich F. Brain-restricted amyloidoma of immunoglobulin λ-light chain origin clinically resembling multiple sclerosis. Biol Chem Hoppe Seyler. 1992;373:1201–9.PubMedGoogle Scholar
  6. 6.
    Merrimen JL, Alkhudair WK, Gupta R. Localized amyloidosis of the urinary tract: case series of nine patients. Urology. 2006;67:904–9.PubMedGoogle Scholar
  7. 7.
    Hagari Y, Mihara M, Hagari S. Nodular localized cutaneous amyloidosis: detection of monoclonality of infiltrating plasma cells by polymerase chain reaction. Br J Dermatol. 1996;135:630–3.PubMedGoogle Scholar
  8. 8.
    Hagari Y, Mihara M, Konohana I, Ueki H, Yamamoto O, Koizumi H. Nodular localized cutaneous amyloidosis: further demonstration of monoclonality of infiltrating plasma cells in four additional Japanese patients. Br J Dermatol. 1998;138:652–4.PubMedGoogle Scholar
  9. 9.
    Setoguchi M, Hoshii Y, Kawano H, Ishihara T. Analysis of plasma cell clonality in localized AL amyloidosis. Amyloid. 2000;7:41–5.PubMedGoogle Scholar
  10. 10.
    Ryan RJ, Sloan JM, Collins AB, Mansouri J, Raje NS, Zukerberg LR, Ferry JA. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue with amyloid deposition: a clinicopathologic case series. Am J Clin Pathol. 2012;137:51–64.PubMedGoogle Scholar
  11. 11.
    Grogg KL, Aubry MC, Vrana JA, Theis JD, Dogan A. Nodular pulmonary amyloidosis is characterized by localized immunoglobulin deposition and is frequently associated with an indolent B-cell lymphoproliferative disorder. Am J Surg Pathol. 2013;37:406–12.PubMedGoogle Scholar
  12. 12.
    Olsen KE, Sletten K, Sandgren O, Olsson H, Myrvold K, Westermark P. What is the role of giant cells in localized AL amyloidosis? Amyloid. 1999;6:89–97.PubMedGoogle Scholar
  13. 13.
    Westermark P. Localized AL amyloidosis: a suicidal neoplasm? Ups J Med Sci. 2012;117:244–50.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Charlot M, Seldin DC, O’hara C, Skinner M, Sanchorawala V. Localized amyloidosis of the breast: a case series. Amyloid. 2011;18:72–5.PubMedGoogle Scholar
  15. 15.
    Piazza C, Cavaliere S, Foccoli P, Toninelli C, Bolzoni A, Peretti G. Endoscopic management of laryngo-tracheobronchial amyloidosis: a series of 32 patients. Eur Arch Otorhinolaryngol. 2003;260:349–54.PubMedGoogle Scholar
  16. 16.
    Paccalin M, Hachulla E, Cazalet C, Tricot L, Carreiro M, Rubi M, Grateau G, Roblot P. Localized amyloidosis: a survey of 35 French cases. Amyloid. 2005;12:239–45.PubMedGoogle Scholar
  17. 17.
    Mäkitie AA, Vala U, Kronlund H, Kääriäinen M, Pettersson T. Laryngeal amyloidosis as a cause of death. Amyloid. 2013;20:58.PubMedGoogle Scholar
  18. 18.
    Wierzbicka M, Budzyński D, Piwowarczyk K, Bartochowska A, Marszałek A, Szyfter W. How to deal with laryngeal amyloidosis? Experience based on 16 cases. Amyloid. 2012;19(4):177–81.PubMedGoogle Scholar
  19. 19.
    Abdallah A-O, Westfall C, Brown H, Muzaffar J, Atrash S, Nair B. Unilateral conjunctival AL kappa amyloidosis with trace evidence of systemic amyloidosis. Am J Case Rep. 2012;13:102–5.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Westermark GT, Westermark P, Berne C, Korsgren O. Widespread amyloid deposition in transplanted human pancreatic islets. N Engl J Med. 2008;359:977–9.PubMedGoogle Scholar
  21. 21.
    Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140:827–31.PubMedGoogle Scholar
  22. 22.
    Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA. 1987;84:3881–5.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Westermark P, Wernstedt C, O’Brien TD, Hayden DW, Johnson KH. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol. 1987;127:414–7.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA. 1987;84:8628–32.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid and diabetes mellitus. Physiol Rev. 2011;91:795–826.PubMedGoogle Scholar
  26. 26.
    Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT, et al. β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol. 2011;178:2632–40.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T, Abe H, Toyofuku Y, Tamaki M, Ogihara T, et al. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. 2014;124:3634–44.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM, Oh SH, Jin SM, Kim JH, et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Invest. 2014;124:3311–24.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Anderson TJ, Ewen SWB. Amyloid in normal and pathological parathyroid glands. J Clin Pathol. 1974;27:656–63.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Harach HR, Jasani B. Parathyroid hyperplasia in multiple endocrine neoplasia type 1: a pathological and immunohistochemical reappraisal. Histopathology. 1992;20:305–13.PubMedGoogle Scholar
  31. 31.
    Bohl J, Steinmetz H, Störkel S. Age-related accumulation of congophilic fibrillar inclusions in endocrine cells. Virchows Arch A. 1991;419:51–8.Google Scholar
  32. 32.
    Hodkinson HM, Pomerance A. The clinical significance of senile cardiac amyloidosis: a prospective clinico-pathological study. Q J Med. 1977;46:381–7.PubMedGoogle Scholar
  33. 33.
    Westermark P, Johansson B, Natvig JB. Senile cardiac amyloidosis: evidence of two different amyloid substances in the ageing heart. Scand J Immunol. 1979;10:303–8.PubMedGoogle Scholar
  34. 34.
    Westermark P, Sletten K, Johansson B, Cornwell GG III. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci USA. 1990;87:2843–5.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Johansson B, Wernstedt C, Westermark P. Atrial natriuretic peptide deposited as atrial amyloid fibrils. Biochem Biophys Res Commun. 1987;148:1087–92.PubMedGoogle Scholar
  36. 36.
    Linke RP, Voigt C, Störkel FS, Eulitz M. N-terminal amino acid sequence analysis indicates that isolated atrial amyloid is derived from atrial natriuretic peptide. Virchows Arch B. 1988;55:125–7.PubMedGoogle Scholar
  37. 37.
    Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci USA. 2000;97:8525–9.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Pucci A, Wharton J, Arbustini E, Grasso M, Diegoli M, Needleman P, Vigano M, Polak JM. Atrial amyloid deposits in the failing human heart display both atrial and brain natriuretic peptide-like immunoreactivity. J Pathol. 1991;165:235–41.PubMedGoogle Scholar
  39. 39.
    Steiner I, Hájková P. Patterns of isolated atrial amyloid: a study of 100 hearts on autopsy. Cardiovasc Pathol. 2006;15:287–90.PubMedGoogle Scholar
  40. 40.
    Steiner I, Hájková P, Kvasnicka J, Kholová I. Myocardial sleeves of pulmonary veins and atrial fibrillation: a postmortem histopathological study of 100 subjects. Virchows Arch. 2006;449:88–95.PubMedGoogle Scholar
  41. 41.
    Cornwell GG III, Murdoch WL, Kyle RA, Westermark P, Pitkänen P. Frequency and distribution of senile cardiovascular amyloid. Am J Med. 1983;75:618–23.PubMedGoogle Scholar
  42. 42.
    Johansson B, Westermark P. The relation of atrial natriuretic factor to isolated atrial amyloid. Exp Mol Pathol. 1990;52:266–78.PubMedGoogle Scholar
  43. 43.
    Takahashi M, Hoshii Y, Kawano H, Gondo T, Yokota T, Okabayashi H, Shimada I, Ishihara T. Ultrastructural evidence for the formation of amyloid fibrils within cardiomyocytes in isolated atrial amyloid. Amyloid. 1998;5:35–42.PubMedGoogle Scholar
  44. 44.
    Röcken C, Peters B, Juenemann G, Saeger W, Klein HU, Huth C, Roessner A, Goette A. Atrial amyloidosis: an arrhythmogenic substrate for persistent atrial fibrillation. Circulation. 2002;106:2091–7.PubMedGoogle Scholar
  45. 45.
    Steiner I. The prevalence of isolated atrial amyloid. J Pathol. 1987;153:395–8.PubMedGoogle Scholar
  46. 46.
    Looi L-M. Isolated atrial amyloidosis. A clinicopathologic study indicating increased prevalence in chronic heart disease. Hum Pathol. 1993;24:602–7.PubMedGoogle Scholar
  47. 47.
    Leone O, Boriani G, Chiappini B, Pacini D, Cenacchi G, Martin Suarez S, Rapezzi C, Bacchi Reggiani ML, Marinelli G. Amyloid deposition as a cause of atrial remodelling in persistent valvular atrial fibrillation. Eur Heart J. 2004;25:1237–41.PubMedGoogle Scholar
  48. 48.
    Millucci L, Ghezzi L, Bernardini G, Braconi D, Tanganelli P, Santucci A. Prevalence of isolated atrial amyloidosis in young patients affected by congestive heart failure. ScientificWorldJournal. 2012;2012:293863.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Störkel S, Bohl J, Schneider H-M. Senile amyloidosis: principles of localization in a heterogeneous form of amyloidosis. Virchows Arch. 1983;44:145–61.Google Scholar
  50. 50.
    Tashima T, Kitamoto T, Tateishi J, Ogomori K, Nakagaki H. Incidence and characterization of age related amyloid deposits in the human anterior pituitary gland. Virchows Arch A. 1988;412:323–7.Google Scholar
  51. 51.
    Westermark P, Eriksson L, Engström U, Eneström S, Sletten K. Prolactin-derived amyloid in the aging pituitary gland. Am J Pathol. 1997;150:67–73.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Westermark P, Grimelius L, Polak JM, Larsson L-I, van Noorden S, Wilander E, Pearse AGE. Amyloid in polypeptide hormone-producing tumors. Lab Invest. 1977;37:212–5.PubMedGoogle Scholar
  53. 53.
    David R, Buchner A. Amyloid stroma in a tubular carcinoma of palatal salivary gland. Cancer. 1978;41:1836–44.PubMedGoogle Scholar
  54. 54.
    Harach HR, Wilander E, Grimelius L, Bergholm U, Westermark P, Falkmer S. Chromogranin A immunoreactivity compared with argyrophilia, calcitonin immunoreactivity, and amyloid as tumour markers in the histopathological diagnosis of medullary (C-cell) thyroid carcinoma. Pathol Res Pract. 1992;188:123–30.PubMedGoogle Scholar
  55. 55.
    Sletten K, Westermark P, Natvig JB. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med. 1976;143:993–8.PubMedGoogle Scholar
  56. 56.
    Khurana R, Agarwal A, Bajpai VK, Verma N, Sharma AK, Gupta RP, Madhusudan KP. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology. 2004;145:5465–70.PubMedGoogle Scholar
  57. 57.
    Bergholm U, Adami HO, Auer G, Bergström R, Bäckdahl M, Grimelius L, Hansson G, Ljungberg O, Wilander E. Histopathologic characteristics and nuclear DNA content as prognostic factors in medullary thyroid carcinoma. A nationwide study in Sweden. The Swedish MTC Study Group. Cancer. 1989;64:135–42.PubMedGoogle Scholar
  58. 58.
    Scopsi L, Sampietro G, Boracchi P, Del Bo R, Gullo M, Placucci M, Pilotti S. Multivariate analysis of prognostic factors in sporadic medullary carcinoma of the thyroid. A retrospective study of 109 consecutive patients. Cancer. 1996;78:2173–83.PubMedGoogle Scholar
  59. 59.
    Westermark GT. Endocrine amyloid. In: Sipe JD, editor. Amyloid proteins. The beta sheet conformation and disease. Wiley-VCH: Weinheim; 2005. p. 723–54.Google Scholar
  60. 60.
    Mittendorf EA, Liu YC, McHenry CR. Giant insulinoma: case report and review of the literature. J Clin Endocrinol Metab. 2005;90:575–80.PubMedGoogle Scholar
  61. 61.
    Callacondo D, Arenas JL, Ganoza AJ, Rojas-Camayo J, Quesada-Olarte J, Robledo H. Giant insulinoma: a report of 3 cases and review of the literature. Pancreas. 2013;42:1323–32.PubMedGoogle Scholar
  62. 62.
    Stridsberg M, Berne C, Sandler S, Wilander E, Öberg K. Inhibition of insulin secretion, but normal peripheral insulin sensitivity, in a patient with a malignant endocrine pancreatic tumour producing high amounts of an islet amyloid polypeptide-like molecule. Diabetologia. 1993;36:843–9.PubMedGoogle Scholar
  63. 63.
    Landolt AM, Kleihues P, Heitz PU. Amyloid deposits in pituitary adenomas. Differentiation in two types. Arch Pathol Lab Med. 1987;111:453–8.PubMedGoogle Scholar
  64. 64.
    Hinton DR, Polk RK, Linse KD, Weiss MH, Kovacs K, Garner JA. Characterization of spherical amyloid protein from a prolactin-producing pituitary adenoma. Acta Neuropathol. 1997;93:43–9.PubMedGoogle Scholar
  65. 65.
    Paetau A, Partanen S, Mustajoki P, Valtonen S, Pelkonen R, Wahlström T. Prolactinoma of the pituitary containing amyloid. Acta Endocrinol. 1985;109:176–80.PubMedGoogle Scholar
  66. 66.
    Kubota T, Kuroda E, Yamashima T, Tachibana O, Kabuto M, Yamamoto S. Amyloid formation in prolactinoma. Arch Pathol Lab Med. 1986;110(1):72–5.PubMedGoogle Scholar
  67. 67.
    Levine SN, Ishaq S, Nanda A, Wilson JD, Gonzalez-Toledo E. Occurrence of extensive spherical amyloid deposits in a prolactin-secreting pituitary macroadenoma: a radiologic-pathologic correlation. Ann Diagn Pathol. 2013;17:361–6.PubMedGoogle Scholar
  68. 68.
    Iwase T, Nishizawa S, Baba S, Hinokuma K, Sugimura H, Nakamura S, Uemura K, Shirasawa H, Kino I. Intrasellar neuronal choristoma associated with growth hormone-producing pituitary adenoma containing amyloid deposits. Hum Pathol. 1995;26:925–8.PubMedGoogle Scholar
  69. 69.
    Bilbao JM, Kovacs K, Horvath E, Higgins HP, Horsey WJ. Pituitary melanocorticotrophinoma with amyloid deposition. J Can Sci Neurol. 1975;2(3):199–202.Google Scholar
  70. 70.
    Waugh DF. A fibrous modification of insulin. I. The heat precipitate of insulin. J Am Chem Soc. 1946;68:247–50.Google Scholar
  71. 71.
    Störkel S, Schneider H-M, Müntefering H, Kashiwagi S. Iatrogenic, insulin-dependent, local amyloidosis. Lab Invest. 1983;48:108–11.PubMedGoogle Scholar
  72. 72.
    Dische FE, Wernstedt C, Westermark GT, Westermark P, Pepys MB, Rennie JA, Gilbey SG, Watkins PJ. Insulin as an amyloid-fibril protein at sites of repeated insulin injections in a diabetic patient. Diabetologia. 1988;31:158–61.PubMedGoogle Scholar
  73. 73.
    Shikama Y, Kitazawa J, Yagihashi N, Uehara O, Murata Y, Yajima N, Wada R, Yagihashi S. Localized amyloidosis at the site of repeated insulin injection in a diabetic patient. Intern Med. 2010;49:397–401.PubMedGoogle Scholar
  74. 74.
    Yumlu S, Barany R, Eriksson M, Röcken C. Localized insulin-derived amyloidosis in patients with diabetes mellitus: a case report. Hum Pathol. 2009;40:1655–60.PubMedGoogle Scholar
  75. 75.
    D’Souza A, Theis JD, Vrana JA, Dogan A. Pharmaceutical amyloidosis associated with subcutaneous insulin and enfuvirtide administration. Amyloid. 2014;21:71–5.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Westermark P. Amyloidosis of the skin: a comparison between localized and systemic amyloidosis. Acta Derm Venereol. 1979;59:341–5.PubMedGoogle Scholar
  77. 77.
    Chandran NS, Goh BK, Lee SS, Goh CL. Case of primary localized cutaneous amyloidosis with protean clinical manifestations: lichen, poikiloderma-like, dyschromic and bullous variants. J Dermatol. 2011;38:1066–71.PubMedGoogle Scholar
  78. 78.
    Black MM, Heather CJ. The ultrastructure of lichen amyloidosus with special reference to the epidermal changes. Br J Dermatol. 1972;87:117–22.PubMedGoogle Scholar
  79. 79.
    Norén P, Westermark P. Two different pathogenetic pathways in lichen amyloidus and macular amyloidosis. Arch Dermatol Res. 1986;278:206–13.PubMedGoogle Scholar
  80. 80.
    Lee Y-S, Fong P-H. Macular and lichenoid amyloidosis: a possible secretory product of stimulated basal keratinocytes. An ultrastructural study. Pathology. 1991;23:322–6.PubMedGoogle Scholar
  81. 81.
    Kumakiri M, Hashimoto K. Histogenesis of primary localized cutaneous amyloidosis: sequential change of epidermal keratinocytes to amyloid via filamentous degeneration. J Invest Dermatol. 1979;73:150–62.PubMedGoogle Scholar
  82. 82.
    Huilgol SC, Ramnarain N, Carrington P, Leigh IM, Black MM. Cytokeratins in primary cutaneous amyloidosis. Australas J Dermatol. 1998;39:81–5.PubMedGoogle Scholar
  83. 83.
    Apaydin R, Gürbüz Y, Bayramgürler D, Müezzinoglu B, Bilen N. Cytokeratin expression in lichen amyloidosus and macular amyloidosis. J Eur Acad Dermatol Venereol. 2004;18:305–9.PubMedGoogle Scholar
  84. 84.
    Kobayashi H, Hashimoto K. Amyloidogenesis in organ-limited cutaneous amyloidosis: an antigenic identity between epidermal keratin and skin amyloid. J Invest Dermatol. 1983;80:66–72.PubMedGoogle Scholar
  85. 85.
    Westermark P, Murphy CL, Eulitz M, Wallgren-Pettersson C, Udd B, Hellman U, Ihse E, Weiss DT, Solomon A. Galectin 7-associated cutaneous amyloidosis. Amyloid. 2010;17 Suppl 1:71.Google Scholar
  86. 86.
    Miura Y, Harumiya S, Ono K, Fujimoto E, Akiyama M, Fujii N, Kawano H, Wachi H, Tajima S. Galectin-7 and actin are components of amyloid deposit of localized cutaneous amyloidosis. Exp Dermatol. 2013;22:36–40.PubMedGoogle Scholar
  87. 87.
    Leonidas DD, Vatzaki EH, Vorum H, Celis JE, Madsen P, Acharya KR. Structural basis for the recognition of carbohydrates by human galectin-7. Biochemistry. 1998;67:13930–40.Google Scholar
  88. 88.
    Kousseff BG, Espinoza C, Zamore GA. Sipple syndrome with lichen amyloidosis as a paracrinopathy: pleiotropy, heterogeneity, or a contiguous gene? J Am Acad Dermatol. 1991;25:651–7.PubMedGoogle Scholar
  89. 89.
    Verga U, Fugazzola L, Cambiaghi S, Pritelli C, Alessi E, Cortelazzi D, Gangi E, Beck-Peccoz P. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin Endocrinol (Oxf). 2003;59:156–61.Google Scholar
  90. 90.
    Lin MW, Lee DD, Lin CH, Huang CY, Wong CK, Chang YT, Liu HN, Hsiao KJ, Tsai SF. Suggestive linkage of familial primary cutaneous amyloidosis to a locus on chromosome 1q23. Br J Dermatol. 2005;152:29–36.PubMedGoogle Scholar
  91. 91.
    Arita K, South AP, Hans-Filho G, Sakuma TH, Lai-Cheong J, Clements S, Odashiro M, Odashiro DN, Hans-Neto G, Hans NR, et al. Oncostatin M receptor-beta mutations underlie familial primary localized cutaneous amyloidosis. Am J Hum Genet. 2008;82:73–80.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Tanaka A, Lai-Cheong JE, van den Akker PC, Nagy N, Millington G, Diercks GF, van Voorst Vader PC, Clements SE, Almaani N, Techanukul T, et al. The molecular skin pathology of familial primary localized cutaneous amyloidosis. Exp Dermatol. 2010;19:416–23.PubMedGoogle Scholar
  93. 93.
    Westermark P, Ridderström E, Vahlquist A. Macular posterior pigmentary incontinence: its relation to macular amyloidosis and notalgia paresthetica. Acta Derm Venereol. 1996;76:302–4.PubMedGoogle Scholar
  94. 94.
    Bugalho MJGM, Limbert E, Sobrinho LG, Clode AL, Soares J, Nunes JFM, Pereira MC, Santos MA. A kindred with multiple endocrine neoplasia type 2A associated with pruritic skin lesions. Cancer. 1992;70:2664–7.PubMedGoogle Scholar
  95. 95.
    Olsen K, Westermark P. Amyloid in basal cell carcinoma and seborrheic keratosis. Acta Derm Venereol. 1994;74:273–5.PubMedGoogle Scholar
  96. 96.
    Looi LM. Localized amyloidosis in basal cell carcinoma. A pathologic study. Cancer. 1983;52:1833–6.PubMedGoogle Scholar
  97. 97.
    Satti MB, Azzopardi JG. Amyloid deposits in basal cell carcinoma of the skin. A pathologic study of 199 cases. J Am Acad Dermatol. 1990;22:1082–7.PubMedGoogle Scholar
  98. 98.
    Hashimoto K, King LE. Secondary localized cutaneous amyloidosis associated with actinic keratosis. J Invest Dermatol. 1973;61:293–9.PubMedGoogle Scholar
  99. 99.
    Ginarte M, León A, Toribio J. Disseminated superficial porokeratosis with amyloid deposits. Eur J Dermatol. 2005;15:298–300.PubMedGoogle Scholar
  100. 100.
    Apaydin R, Gürbüz Y, Bayramgürler D, Bilen N. Cytokeratin contents of basal cell carcinoma, epidermis overlying tumour, and associated stromal amyloidosis: an immunohistochemical study. Amyloid. 2005;12:41–7.PubMedGoogle Scholar
  101. 101.
    Pindborg JJ. A calcifying epithelial odontogenic tumor. Cancer. 1958;11:838–43.PubMedGoogle Scholar
  102. 102.
    Solomon A, Murphy CL, Weaver K, Weiss DT, Hrncic R, Eulitz M, Donnell RL, Sletten K, Westermark GT, Westermark P. Calcifying epithelial odontogenic (Pindborg) tumor-associated amyloid consists of a novel human protein. J Lab Clin Med. 2003;142:348–55.PubMedGoogle Scholar
  103. 103.
    Murphy CL, Kestler DP, Foster JS, Wang S, Macy SD, Kennel SJ, Carlson ER, Hudson J, Weiss DT, Solomon A. Odontogenic ameloblast-associated protein nature of the amyloid found in calcifying epithelial odontogenic tumors and unerupted tooth follicles. Amyloid. 2008;15:89–95.PubMedGoogle Scholar
  104. 104.
    Siddiqui S, Bruker CT, Kestler DP, Foster JS, Gray KD, Solomon A, Bell JL. Odontogenic ameloblast associated protein as a novel biomarker for human breast cancer. Am Surg. 2009;75:769–75.PubMedGoogle Scholar
  105. 105.
    Sipe JD, Benson MD, Ikeda S, Merlini G, Saraiva MJ, Westermark P. Updated nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidoses. Amyloid. 2014;21:221–4.PubMedGoogle Scholar
  106. 106.
    Benson MD, Breall J, Cummings OW, Liepnieks JJ. Biochemical characterization of amyloid by endomyocardial biopsy. Amyloid. 2009;16:9–14.PubMedGoogle Scholar
  107. 107.
    Pitkänen P, Westermark P, Cornwell GG III. Senile systemic amyloidosis. Am J Pathol. 1984;117:391–9.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Ueda M, Ando Y, Haraoka K, Katsuragi S, Terasaki Y, Sugimoto M, Sun X, Uchino M. Aging and transthyretin-related amyloidosis: pathologic examinations in pulmonary amyloidosis. Amyloid. 2006;13(1):24–30.PubMedGoogle Scholar
  109. 109.
    Westermark P, Bergström J, Solomon A, Murphy C, Sletten K. Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural consideration. Amyloid. 2003;10 Suppl 1:48–54.PubMedGoogle Scholar
  110. 110.
    Sekijima Y, Uchiyama S, Tojo K, Sano K, Shimizu Y, Imaeda T, Hoshii Y, Kato H, S-i I. High prevalence of wild-type transthyretin deposition in patients with idiopathic carpal tunnel syndrome: a common cause of carpal tunnel syndrome in the elderly. Hum Pathol. 2011;42:1785–91.PubMedGoogle Scholar
  111. 111.
    Gioeva Z, Urban P, Meliss RR, Haag J, Axmann HD, Siebert F, Becker K, Radtke HG, Röcken C. ATTR amyloid in the carpal tunnel ligament is frequently of wildtype transthyretin origin. Amyloid. 2013;20:1–6.PubMedGoogle Scholar
  112. 112.
    Westermark P, Westermark GT, Suhr OB, Berg S. Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Ups J Med Sci. 2014;119:223–8.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Yanagisawa A, Ueda M, Sueyoshi T, Okada T, Fujimoto T, Ogi Y, Kitagawa K, Tasaki M, Misumi Y, Oshima T, et al. Amyloid deposits derived from transthyretin in the ligamentum flavum as related to lumbar spinal canal stenosis. Mod Pathol. 2015;28:201–7.PubMedGoogle Scholar
  114. 114.
    Westermark P, Davey E, Lindbom K, Enqvist S. Subcutaneous fat tissue for diagnosis and studies of systemic amyloidosis. Acta Histochem. 2006;108:209–13.PubMedGoogle Scholar
  115. 115.
    Felding P, Fex G, Westermark P, Olofsson B-O, Pitkänen P, Benson L. Prealbumin in Swedish patients with senile systemic amyloidosis and familial amyloidotic polyneuropathy. Scand J Immunol. 1985;21:133–40.PubMedGoogle Scholar
  116. 116.
    Bergström J, Gustavsson Å, Hellman U, Sletten K, Murphy CL, Weiss DT, Solomon A, Olofsson B-O, Westermark P. Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. J Pathol. 2005;206:224–32.PubMedGoogle Scholar
  117. 117.
    Johansson B, Westermark P. Senile systemic amyloidosis: a clinico-pathological study of twelve patients with massive amyloid infiltration. Int J Cardiol. 1991;32:83–92.PubMedGoogle Scholar
  118. 118.
    Eriksson A, Eriksson P, Olofsson B-O, Thornell L-E. The cardiac atrioventricular conduction system in familial amyloidosis with polyneuropathy. A clinico-pathologic study of six cases from Northern Sweden. Acta Pathol Microbiol Immunol Scand A. 1983;91:343–9.PubMedGoogle Scholar
  119. 119.
    Eriksson A, Eriksson P, Olofsson B-O, Thornell L-E. The sinoatrial node in familial amyloidosis with polyneuropathy. A clinico-pathological study of nine cases from northern Sweden. Virchows Arch A. 1984;402:239–46.Google Scholar
  120. 120.
    Tanskanen M, Kiuru-Enari S, Tienari P, Polvikoski T, Verkkoniemi A, Rastas S, Sulkava R, Paetau A. Senile systemic amyloidosis, cerebral amyloid angiopathy, and dementia in a very old Finnish population. Amyloid. 2006;13:164–9.PubMedGoogle Scholar
  121. 121.
    Kyle RA, Spittell PC, Gertz MA, Li CY, Edwards WD, Olson LJ, Thibodeau SN. The premortem recognition of systemic senile amyloidosis with cardiac involvement. Am J Med. 1996;101:395–400.PubMedGoogle Scholar
  122. 122.
    Ng B, Connors LH, Davidoff R, Skinner M, Falk RH. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med. 2005;165:1425–9.PubMedGoogle Scholar
  123. 123.
    Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, Salvi F, Ciliberti P, Pastorelli F, Biagini E, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203–12.PubMedGoogle Scholar
  124. 124.
    Mucchiano G, Cornwell GG III, Westermark P. Senile aortic amyloid. Evidence of two distinct forms of localized deposits. Am J Pathol. 1992;140:871–7.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Schwartz P. Amyloidosis, cause and manifestation of senile deterioration. Springfield, IL: C.C. Thomas; 1970.Google Scholar
  126. 126.
    Battaglia S, Trentini GP. Aortenamyloidose im Erwachsenenalter. Virchows Arch A. 1978;378:153–9.Google Scholar
  127. 127.
    Peng S, Glennert J, Westermark P. Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid. 2005;12:96–102.PubMedGoogle Scholar
  128. 128.
    Muckle TJ. Giant cell inflammation compared with amyloidosis of the internal elastic lamina in temporal arteries. Arthritis Rheum. 1988;31:1186–9.PubMedGoogle Scholar
  129. 129.
    Peng S, Westermark P, Näslund J, Häggqvist B, Glennert J, Westermark P. Medin and medin-amyloid in ageing inflamed and non-inflamed temporal arteries. J Pathol. 2002;196:91–6.PubMedGoogle Scholar
  130. 130.
    Häggqvist B, Näslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, Nordstedt C, Engström U, Westermark P. Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA. 1999;96:8669–74.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Yolken RH, Peterson JA, Vonderfecht SL, Fouts ET, Midthun K, Newburg DS. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J Clin Invest. 1992;90:1984–91.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Newburg DS, Peterson JA, Ruiz-Palacios M, Matson DO, Morrow AL, Shults J, de Lourdes GM, Chaturvedi P, Newburg SO, Scallan CD, et al. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet. 1998;351:1160–4.PubMedGoogle Scholar
  133. 133.
    Hanayama RM, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417:182–7.PubMedGoogle Scholar
  134. 134.
    Shi J, Gilbert GE. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 2003;101:2628–36.PubMedGoogle Scholar
  135. 135.
    Larsson A, Peng S, Persson H, Rosenbloom J, Abrams WR, Wassberg E, Thelin S, Sletten K, Gerwins P, Westermark P. Lactadherin binds to elastin—a starting point for medin amyloid formation? Amyloid. 2006;13:78–85.PubMedGoogle Scholar
  136. 136.
    Zehr KJ, Mathur A, Orszulak TA, Mullany CJ, Schaff HV. Surgical treatment of ascending aortic aneurysms in patients with giant cell aortitis. Ann Thorac Surg. 2005;79:1512–7.PubMedGoogle Scholar
  137. 137.
    Peng S, Larsson A, Wassberg E, Gerwins P, Thelin S, Fu X, Westermark P. Role of aggregated medin in the pathogenesis of thoracic aortic aneurysm and dissection. Lab Invest. 2007;87:1195–205.PubMedGoogle Scholar
  138. 138.
    López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 1997;150:993–1007.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Westermark P, Mucchiano G, Marthin T, Johnson KH, Sletten K. Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol. 1995;147:1186–92.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Stangou AJ, Banner NR, Hendry BM, Rela M, Portmann B, Wendon J, Monaghan M, Maccarthy P, Buxton-Thomas M, Mathias CJ, et al. Hereditary fibrinogen A alpha-chain amyloidosis: phenotypic characterization of a systemic disease and the role of liver transplantation. Blood. 2010;115:2998–3007.PubMedGoogle Scholar
  141. 141.
    Goffin YA, Murdoch W, Cornwell GG III, Sorenson GD. Microdeposits of amyloid in sclerocalcific heart valves: a histochemical and immunofluorescence study. J Clin Pathol. 1983;36:1342–9.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Kristen AV, Schnabel PA, Winter B, Helmke BM, Longerich T, Hardt S, Koch A, Sack FU, Katus HA, Linke RP, et al. High prevalence of amyloid in 150 surgically removed heart valves—a comparison of histological and clinical data reveals a correlation to atheroinflammatory conditions. Cardiovasc Pathol. 2010;19:228–35.PubMedGoogle Scholar
  143. 143.
    Yokota T, Okabayashi H, Ishihara T, Takahashi M, Iwata T, Yamashita Y, Miyamoto AT, Ushino F. Dystrophic amyloid of the cardiac valves and atherosclerotic aorta has the same antigenicity. Pathol Int. 1995;45:85–6.PubMedGoogle Scholar
  144. 144.
    Pitkänen P, Westermark P, Cornwell GG III, Murdoch W. Amyloid of the seminal vesicles. A distinctive and common localized form of senile amyloidosis. Am J Pathol. 1983;110:64–9.Google Scholar
  145. 145.
    Kee KH, Lee MJ, Shen SS, Suh JH, Lee OJ, Cho HY, Ayala AG, Ro JY. Amyloidosis of seminal vesicles and ejaculatory ducts: a histologic analysis of 21 cases among 447 prostatectomy specimens. Ann Diagn Pathol. 2008;12:235–8.PubMedGoogle Scholar
  146. 146.
    Goldman H. Amyloidosis of seminal vesicles and vas deferens: primary localized cases. Arch Pathol. 1963;75:94–8.PubMedGoogle Scholar
  147. 147.
    Cornwell GG III, Westermark GT, Pitkänen P, Westermark P. Epithelial origin of the amyloid of seminal vesicles in elderly men. J Pathol. 1992;167:297–303.PubMedGoogle Scholar
  148. 148.
    Linke RP, Joswig R, Murphy CL, Wang S, Zhou H, Gross U, Röcken C, Westermark P, Weiss DT, Solomon A. Senile seminal vesicle amyloid is derived from semenogelin I. J Lab Clin Med. 2005;145:187–93.PubMedGoogle Scholar
  149. 149.
    Mata LR, Maunsbach AB. Absorption of secretory protein by the eithelium of hamster seminal vesicle as studied by electron microscope autoradiography. Biol Cell. 1982;46:65–73.Google Scholar
  150. 150.
    Botash RJ, Poster RB, Abraham JL, Makhuli ZM. Senile seminal vesicle amyloidosis associated with hematospermia: demonstration by endorectal MRI. J Comput Assist Tomogr. 1997;21:748–9.PubMedGoogle Scholar
  151. 151.
    Furuya S, Masumori N, Furuya R, Tsukamoto T, Isomura H, Tamakawa M. Characterization of localized seminal vesicle amyloidosis causing hemospermia: an analysis using immunohistochemistry and magnetic resonance imaging. J Urol. 2005;173:1273–7.PubMedGoogle Scholar
  152. 152.
    Erbersdobler A, Kollermann J, Graefen M, Röcken C, Schlomm T. Seminal vesicle amyloidosis does not provide any protection from invasion by prostate cancer. BJU Int. 2009;103:324–6.PubMedGoogle Scholar
  153. 153.
    Meretoja J. Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. A previously unrecognized heritable syndrome. Ann Clin Res. 1969;1:314–24.PubMedGoogle Scholar
  154. 154.
    Pradhan MA, Henderson RA, Patel D, McGhee CN, Vincent AL. Heavy-chain amyloidosis in TGFBI-negative and gelsolin-negative atypical lattice corneal dystrophy. Cornea. 2011;30:1163–6.PubMedGoogle Scholar
  155. 155.
    Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Kawasaki S, Kinoshita S. Clinical and basic aspects of gelatinous drop-like corneal dystrophy. Dev Ophthalmol. 2011;48:97–115.PubMedGoogle Scholar
  157. 157.
    Lin P-Y, Kao S-C, Hsueh K-F, Chen WY-K, Lee S-M, Lee F-L, Shiuh W-M. Localized amyloidosis of the cornea secondary to trichiasis: clinical course and pathogenesis. Cornea. 2003;22:491–4.PubMedGoogle Scholar
  158. 158.
    Munier FL, Korvatska E, Djemaï A, Le Paslier D, Zografos L, Pescia G, Schorderet DF. Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet. 1997;15:247–51.PubMedGoogle Scholar
  159. 159.
    Escribano J, Hernando N, Ghosh S, Crabb J, Coca-Prados M. cDNA from human ocular ciliary epithelium homologous to beta ig-h3 is preferentially expressed as an extracellular protein in the corneal epithelium. J Cell Physiol. 1994;160:511–21.PubMedGoogle Scholar
  160. 160.
    Stix B, Leber M, Bingemer P, Gross C, Rüschoff J, Fändrich M, Schorderet DF, Vorwerk CK, Zacharias M, Roessner A, et al. Hereditary lattice corneal dystrophy is associated with corneal amyloid deposits enclosing C-terminal fragments of keratoepithelin. Invest Ophthalmol Vis Sci. 2005;46:1133–9.PubMedGoogle Scholar
  161. 161.
    Tsujikawa M, Kurahashi H, Tanaka T, Nishida K, Shimomura Y, Tano Y, Nakamura Y. Identification of the gene responsible for gelatinous drop-like corneal dystrophy. Nat Genet. 1999;21:420–3.PubMedGoogle Scholar
  162. 162.
    Tsujikawa M. Gelatinous drop-like corneal dystrophy. Cornea. 2012;31:S37–40.PubMedGoogle Scholar
  163. 163.
    Ripani E, Sacchetti A, Corda D, Alberti S. Human Trop-2 is a tumor-associated calcium signal transducer. Int J Cancer. 1998;76:671–6.PubMedGoogle Scholar
  164. 164.
    Ando Y, Nakamura M, Katsuragi S, Terazaki H, Nozawa T, Okuda T, Misumi S, Matsunaga N, Hata K, Tajiri T, et al. A novel localized amyloidosis associated with lactoferrin in the cornea. Lab Invest. 2002;82:757–66.PubMedGoogle Scholar
  165. 165.
    Ladefoged C, Christensen HE. Congophilic substance with green dichroism in hip joints in autopsy material. Acta Pathol Microbiol Scand A. 1980;88:55–8.PubMedGoogle Scholar
  166. 166.
    Ladefoged C. Amyloid deposits in the knee joint at autopsy. Ann Rheum Dis. 1986;45:668–72.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Goffin YA, Thoua Y, Potvliege PR. Microdeposition of amyloid in the joints. Ann Rheum Dis. 1981;40:27–33.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Ladefoged C. Amyloid in intervertebral discs. A histopathological investigation of intervertebral discs from 30 randomly selected autopsies. Appl Pathol. 1985;3:96–104.PubMedGoogle Scholar
  169. 169.
    Ryan LM, Liang G, Kozin F. Amyloid arthropathy: possible association with chondrocalcinosis. J Rheumatol. 1982;9:273–8.PubMedGoogle Scholar
  170. 170.
    Ladefoged C. Amyloid in osteoarthritic hip joints: deposits in relation to chondromatosis, pyrophosphate, and inflammatory cell infiltrate in the synovial membrane and fibrous capsule. Ann Rheum Dis. 1983;42:659–64.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Ladefoged C, Fedders O, Petersen OF. Amyloid in intervertebral discs: a histopathological investigation of surgical material from 100 consecutive operations on herniated discs. Ann Rheum Dis. 1986;45:239–43.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Mihara S, Kawai S, Gondo T, Ishihara T. Intervertebral disc amyloidosis: histochemical, immunohistochemical and ultrastructural observations. Histopathology. 1994;25:415–20.PubMedGoogle Scholar
  173. 173.
    Mohr W, Kuhn C, Linke RP, Wessinghage D. Deposition of amyloid of unknown origin in articular cartilage. Virchows Arch B. 1991;60:259–62.PubMedGoogle Scholar
  174. 174.
    Solomon A, Murphy CL, Kestler DP, Coriu D, Weiss DT, Makovitzky J, Westermark P. Amyloid contained in the knee joint meniscus is formed from apolipoprotein A-I. Arthritis Rheum. 2006;54:3545–50.PubMedGoogle Scholar
  175. 175.
    Sueyoshi T, Ueda M, Jono H, Irie H, Sei A, Ide J, Ando Y, Mizuta H. Wild-type transthyretin-derived amyloidosis in various ligaments and tendons. Hum Pathol. 2011;42:1259–64.PubMedGoogle Scholar
  176. 176.
    Sueyoshi T, Ueda M, Sei A, Misumi Y, Oshima T, Yamashita T, Obayashi K, Shinriki S, Jono H, Shono M, et al. Spinal multifocal amyloidosis derived from wild-type transthyretin. Amyloid. 2011;18:165–8.PubMedGoogle Scholar
  177. 177.
    Takei Y, Hattori T, Gono T, Tokuda T, Saitoh S, Hoshii Y, S-i I. Senile systemic amyloidosis presenting as bilateral carpal tunnel syndrome. Amyloid. 2002;9:252–5.PubMedGoogle Scholar
  178. 178.
    Gellerstedt N. Uber das Vorkommen von Sekretkapillaren im Epithel des Plexus chorioideus. Zbl Allg Path Path Anat. 1932;56:164–7.Google Scholar
  179. 179.
    Biondi G. Ein neuer histologischer Befund am Epithel des Plexus corioideus. Z Ges Neurol Psychatry. 1933;144:161–5.Google Scholar
  180. 180.
    Eriksson L, Westermark P. Intracellular neurofibrillary tangle-like aggregations. A constantly present amyloid alteration in the aging choroid plexus. Am J Pathol. 1986;25:124–9.Google Scholar
  181. 181.
    Eriksson L, Westermark P. Age-related accumulation of amyloid inclusions in adrenal cortical cells. Am J Pathol. 1990;136:461–6.PubMedCentralPubMedGoogle Scholar
  182. 182.
    Yanamandra K, Alexeyev O, Zamotin V, Srivastava V, Shchukarev A, Brorsson AC, Tartaglia GG, Vogl T, Kayed R, Wingsle G, et al. Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PLoS One. 2009;4, e5562.PubMedCentralPubMedGoogle Scholar
  183. 183.
    Westermark GT, Sletten K, Westermark P. Alkali-degradation of amyloid: an ancient method useful for making monoclonal antibodies against amyloid fibril proteins. Scand J Immunol. 2009;70:535–40.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations