AA Amyloidosis

  • Amanda K. OmbrelloEmail author
  • Ivona Aksentijevich
Part of the Current Clinical Pathology book series (CCPATH)


AA amyloidosis, also known as reactive amyloidosis, is a form of amyloidosis that develops in patients with chronic inflammatory conditions. The prolonged inflammatory state leads to misfolding of the AA amyloid protein with resultant deposition of AA amyloid fibrils into tissues. Although organ involvement varies, AA amyloidosis most commonly affects the kidneys and, without treatment of the underlying inflammatory condition, ultimately progresses to renal failure. Historically, infectious diseases were the leading cause of AA amyloidosis, but with medical advancements that target these infections, other conditions such as autoimmune disease (rheumatoid arthritis, ankylosing spondylitis, and systemic juvenile arthritis) and autoinflammatory diseases have emerged as significant contributors to the development of AA amyloidosis. The monogenic autoinflammatory diseases are generally inherited in an autosomal-recessive or dominant fashion and the specific conditions that have the highest risk for the development of AA amyloidosis include familial Mediterranean fever, TNF receptor-associated periodic syndrome, and the cryopyrin-associated periodic syndromes. At this point in time, the treatment of AA amyloidosis is focused on suppression of the underlying inflammatory disease process. The therapeutic developments of the past 20 years have led us to an era where early, aggressive therapy is appearing to result in a decreased number of new AA amyloidosis cases.


Serum amyloid A Rheumatic disease Autoinflammatory disease IL-1 mediated disease Cryopyrin-associated periodic fever syndromes Familial Mediterranean fever Tumor necrosis factor receptor-associated periodic syndrome Familial cold autoinflammatory syndrome Muckle–Wells syndrome Neonatal onset multisystem inflammatory disease Hyper IgD syndrome Inflammatory bowel disease Biologic medications 


  1. 1.
    Rocken C, Shakespeare A. Pathology, diagnosis and pathogenesis of AA amyloidosis. Virchows Arch. 2002;440(2):111–22.PubMedGoogle Scholar
  2. 2.
    Lachmann HJ, Goodman HJB, Gilbertson AJ, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356:2361–71.PubMedGoogle Scholar
  3. 3.
    Connolly JO, Gillmore JD, Lachmann HJ, Davenport A, Hawkins PN, Woolfson RG. Renal amyloidosis in intravenous drug users. Q J Med. 2006;99:737–42.Google Scholar
  4. 4.
    Akcay S, Akman B, Ozdemir H, Eyuboglu FO, Karacan O, Ozdemir N. Bronchiectasis-related amyloidosis as a cause of chronic renal failure. Ren Fail. 2002;24(6):815–23.PubMedGoogle Scholar
  5. 5.
    Picken M. New insights into systemic amyloidosis: the importance of diagnosis of specific type. Curr Opin Nephrol Hypertens. 2007;16:196–203.PubMedGoogle Scholar
  6. 6.
    Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem. 1999;265:501–23.PubMedGoogle Scholar
  7. 7.
    Xu L, Badolato R, Murphy WJ, et al. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol. 1995;155:1184–90.PubMedGoogle Scholar
  8. 8.
    Stevens FJ. Hypothetical structure of human serum amyloid A protein. Amyloid. 2004;11:71–80.PubMedGoogle Scholar
  9. 9.
    Van der Hilst JCH. Recent insights into the pathogenesis of type AA amyloidosis. ScientificWorldJournal. 2011;11:641–50.PubMedGoogle Scholar
  10. 10.
    Gertz MA, Kyle RA. Secondary systemic amyloidosis: response and survival in 64 patients. Medicine (Baltimore). 1991;70:246–56.Google Scholar
  11. 11.
    Booth DR, Booth SE, Gillmore JD, Hawkins PN, Pepys MB. SAA1 alleles as risk factors in reactive systemic AA amyloidosis. Amyloid. 1998;5:262–5.PubMedGoogle Scholar
  12. 12.
    Baba S, Masago SA, Takahashi T, et al. A novel allelic variant of serum amyloid A, SAA1 gamma: genomic evidence, evolution, frequency, and implication as a risk factor for reactive systemic AA amyloidosis. Hum Mol Genet. 1995;4:1083–7.PubMedGoogle Scholar
  13. 13.
    Dhillon V, Woo P, Isenberg D. Amyloidosis in the rheumatic disease. Ann Rheum Dis. 1989;48:696–701.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Immonen K, Finne P, Gronhagen-Riska C, et al. A marked decline in the incidence of renal replacement therapy for amyloidosis associated with inflammatory rheumatic diseases—data from nationwide registries in Finland. Amyloid. 2011;18:25–8.PubMedGoogle Scholar
  15. 15.
    David J, Vouyiouka O, Ansell BM, Hall A, Woo P. Amyloidosis in chronic juvenile arthritis: a morbidity and mortality study. Clin Exp Rheum. 1993;11:85–90.Google Scholar
  16. 16.
    Filipowicz-Sosnowska AM, Roztropowicz-Denisiewicz K, Rosenthal CJ, Baum J. The amyloidosis of juvenile rheumatoid arthritis—comparative studies in Polish and American children. Arthritis Rheum. 1978;21(6):699–703.PubMedGoogle Scholar
  17. 17.
    David J, Woo P. Reactive amyloidosis. Arch Dis Child. 1992;67(3):258–61.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Immonen K, Savolainen A, Kautiainen H, Hakala M. Longterm outcome of amyloidosis associated with juvenile idiopathic arthritis. J Rheumatol. 2008;35:907–12.PubMedGoogle Scholar
  19. 19.
    Singh G, Kumari N, Aggarwal A, Krishnani N, Misra R. Prevalence of subclinical amyloidosis in ankylosing spondylitis. J Rheumatol. 2007;34:371–3.PubMedGoogle Scholar
  20. 20.
    Gratacos J, Orellana C, Sanmarti R, et al. Secondary amyloidosis in ankylosing spondylitis. A systematic survey of 137 patients using abdominal fat aspiration. J Rheumatol. 1997;24:912–5.PubMedGoogle Scholar
  21. 21.
    Lehtinen K. Mortality and causes of death in 398 patients admitted to hospital with ankylosing spondylitis. Ann Rheum Dis. 1993;52:174–6.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Kastner DL, Aksentijevich I. Intermittent and periodic arthritis syndromes. In: Koopman WJ, Moreland LW, editors. Arthritis and allied conditions: a textbook of rheumatology. 15th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. p. 1411–61.Google Scholar
  23. 23.
    Barron K, Athreya B, Kastner D. Periodic fever syndrome and other inherited autoinflammatory diseases. In: Cassidy JT, Petty RE, Laxer RM, Lindsley CB, editors. Textbook of pediatric rheumatology. 6th ed. Philadelphia, PA: Saunders Elsevier; 2011. p. 642–60.Google Scholar
  24. 24.
    Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol. 2009;27:621–68.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13:1178–86.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Ozen S, Bakkaloglu A, Yilmaz E, et al. Mutations in the gene for familial Mediterranean fever: do they predispose to inflammation? J Rheumatol. 2003;30(9):2014–8.PubMedGoogle Scholar
  27. 27.
    Barzilai A, Langevitz P, Goldberg I, et al. Erysipelas-like erythema of familial Mediterranean fever: clinicopathologic correlation. J Am Acad Dermatol. 2000;42:791–5.PubMedGoogle Scholar
  28. 28.
    Chae JJ, Komarow HD, Cheng J, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11:591–604.PubMedGoogle Scholar
  29. 29.
    Masumoto J, Dowds TA, Schaner P, et al. ASC is an activating adaptor for NF-κ(kappa)B and caspase-8 dependent apoptosis. Biochem Biophys Res Commun. 2003;303:69–73.PubMedGoogle Scholar
  30. 30.
    Stehlik C, Fiorentino L, Dorfleutner A, et al. The PAAD/PYRIN family protein ASC is a dual regulator of a conserved step in nuclear factor κ(kappa)B activation pathways. J Exp Med. 2002;196:1605–15.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Touitou I, Lesage S, McDermott M, et al. Infevers: an evolving mutation database for auto-inflammatory syndromes. Hum Mutat. 2004;24:194–8.PubMedGoogle Scholar
  32. 32.
    Marek-Yagel D, Berkun Y, Padeh S, et al. Clinical disease among patients heterozygous for familial Mediterranean fever. Arthritis Rheum. 2009;60:1862–6.PubMedGoogle Scholar
  33. 33.
    Booty MG, Chae JJ, Masters SL, et al. Familial Mediterranean fever with a single MEFV mutation. Where is the second hit? Arthritis Rheum. 2009;60:1851–61.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Aldea A, Campistol JM, Arostegui JI, et al. A severe autosomal-dominant periodic inflammatory disorder with renal AA amyloidosis and colchicine resistance associated to the MEFV H478Y variant in a Spanish kindred: an unusual familial Mediterranean fever phenotype or another MEFV-associated periodic inflammatory disorder? Am J Med Genet A. 2004;124A(1):67–73.PubMedGoogle Scholar
  35. 35.
    Stoffels M, Szperl A, Simon A, et al. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease. Ann Rheum Dis. 2014;73(2):455–61.PubMedGoogle Scholar
  36. 36.
    Chae JJ, Cho YH, Lee GS, et al. Gain of function pyrin mutations induce NLRP3 protein-independent interleukin-1β (beta) activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–68.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Lachmann HJ, Sengul B, Yavuzsen TU, et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology. 2006;45:745–50.Google Scholar
  38. 38.
    Touitou I, Sarkisian T, Medlej-Hashim M, et al. Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum. 2007;56:1706–12.PubMedGoogle Scholar
  39. 39.
    Schwabe AD, Peters RS. Familial Mediterranean fever in Armenians. Analysis of 100 cases. Medicine. 1974;53:453–62.PubMedGoogle Scholar
  40. 40.
    Kasifoglu T, Bilge SY, Sari I, et al. Amyloidosis and its related factors in Turkish patients with familial Mediterranean fever: a multicenter study. Rheumatology. 2014;53(4):741–5.PubMedGoogle Scholar
  41. 41.
    Akse-Onal V, Sag E, Ozen S, et al. Decrease in the rate of secondary amyloidosis in Turkish children with FMF: are we doing better? Eur J Pediatr. 2010;169:971–4.PubMedGoogle Scholar
  42. 42.
    Livneh A, Langevitz P, Shinar Y, et al. MEFV mutation analysis in patients suffering from amyloidosis of familial Mediterranean fever. Amyloid. 1999;6:1–6.PubMedGoogle Scholar
  43. 43.
    Akpolat T, Ozkaya O, Ozen S. Homozygous M694V as a risk factor for amyloidosis in Turkish FMF patients. Gene. 2012;492(1):285–89.PubMedGoogle Scholar
  44. 44.
    Lane T, Loeffler JM, Rowczenio DM, et al. AA amyloidosis complicating the hereditary periodic fever syndromes. Arthritis Rheum. 2013;65(4):1116–21.PubMedGoogle Scholar
  45. 45.
    Topaloglu R, Ozaltin F, Yilmaz E, et al. E148Q is a disease-causing MEFV mutation: a phenotypic evaluation in patients with familial Mediterranean fever. Ann Rheum Dis. 2005;64:750–2.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Gershoni-Baruch R, Brik R, Shinawi M, Livneh A. The differential contribution of MEFV mutant alleles to the clinical profile of familial Mediterranean fever. Eur J Hum Genet. 2002;10(2):145–9.PubMedGoogle Scholar
  47. 47.
    Sohar E, Gafni J, Pras M, Heller H. Familial Mediterranean fever a survey of 470 cases and review of the literature. Am J Med. 1967;43(2):227–53.PubMedGoogle Scholar
  48. 48.
    Kutlay S, Yilmaz E, Koytak ES, et al. A case of familial Mediterranean fever with amyloidosis as the first manifestation. Am J Kidney Dis. 2001;38(6), E34.PubMedGoogle Scholar
  49. 49.
    Balci B, Tinaztepe K, Yilmaz E, et al. MEFV gene mutations in familial Mediterranean fever phenotype II patients with renal amyloidosis in childhood: a retrospective clinicopathological and molecular study. Nephrol Dial Transplant. 2002;17:1921–3.PubMedGoogle Scholar
  50. 50.
    Turkcapar N, Tuncah T, Kutlay S, et al. The contribution of genotypes at the MICA gene triplet repeat polymorphisms and MEFV mutations to amyloidosis and course of the disease in the patients with familial Mediterranean fever. Rheumatol Int. 2007;27:545–51.PubMedGoogle Scholar
  51. 51.
    Touitou I, Picot MC, Domingo C, et al. The MICA region determines the first modifier locus in familial Mediterranean fever. Arthritis Rheum. 2001;44(1):163–9.PubMedGoogle Scholar
  52. 52.
    Medlej-Hashim M, Delague V, Chouery E, et al. Amyloidosis in familial Mediterranean fever patients: correlation with MEFV genotype and SAA1 and MICA polymorphisms effects. BMC Med Genet. 2004;5:4.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Goldfinger SE. Colchicine for familial Mediterranean fever. N Engl J Med. 1972;287(25):1302.PubMedGoogle Scholar
  54. 54.
    Zemer D, Revach M, Pras M, et al. A controlled trial of colchicine in preventing attacks of familial Mediterranean fever. N Engl J Med. 1974;291(18):932–4.PubMedGoogle Scholar
  55. 55.
    Duzova A, Bakkaloglu A, Besbas N, et al. Role of A-SAA in monitoring subclinical inflammation and in colchicine dosage in familial Mediterranean fever. Clin Exp Rheumatol. 2003;21(4):509–14.PubMedGoogle Scholar
  56. 56.
    Zemer D, Pras M, Sohar E, Modan M, Cabili S, Gafni J. Colchicine in the prevention and treatment of the amyloidosis of familial Mediterranean fever. N Engl J Med. 1986;314(16):1001–5.PubMedGoogle Scholar
  57. 57.
    Livneh A, Zemer D, Langevitz P, Laor A, Sohar E, Pras M. Colchicine treatment of AA amyloidosis of familial Mediterranean fever. Arthritis Rheum. 1994;37(12):1804–11.PubMedGoogle Scholar
  58. 58.
    Sevoyan MK, Sarkisian TF, Beglaryan AA, Shahsuvaryan G, Armenian H. Prevention of amyloidosis in familial Mediterranean fever with colchicine: a case-control study in Armenia. Med Princ Pract. 2009;18:441–6.PubMedGoogle Scholar
  59. 59.
    Meinzer U, Quartier P, Alexandra JF, Hentgen V, Retornaz F, Kone-Paut I. Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin Arthritis Rheum. 2011;41(2):265–71.PubMedGoogle Scholar
  60. 60.
    Chae JJ, Wood G, Masters SL, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β (beta) production. Proc Natl Acad Sci USA. 2006;103(26):9982–7.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Stankovic Stojanovic K, Delmas Y, Torres PU, et al. Dramatic beneficial effect of interleukin-1 inhibitor treatment in patients with familial Mediterranean fever complicated with amyloidosis and renal failure. Nephrol Dial Transplant. 2012;27(5):1898–901.PubMedGoogle Scholar
  62. 62.
    Abedi AS, Nakhjavani JM, Etemadi J. Long-term outcome of renal transplantation in patients with familial Mediterranean fever amyloidosis: a single-center experience. Tranplant Proc. 2013;45(10):3502–4.Google Scholar
  63. 63.
    Blum A, Sohar E. The diagnosis of amyloidosis. Ancillary procedures. Lancet. 1962;1:721–4.PubMedGoogle Scholar
  64. 64.
    Sungur C, Sungur R, Ruacan S, et al. Diagnostic value of bone marrow biopsy in patients with renal disease secondary to familial Mediterranean fever. Kidney Int. 1993;44:834–6.PubMedGoogle Scholar
  65. 65.
    Ozdemir BH, Ozdemir OG, Ozdemir FN, Ozdemir AI. Value of testis biopsy in the diagnosis of systemic amyloidosis. Urology. 2002;59(2):201–5.PubMedGoogle Scholar
  66. 66.
    Williamson LM, Hull D, Mehta R, Reeves WG, Robinson BH, Toghill PJ. Familial Hibernian fever. Q J Med. 1982;51(204):469–80.PubMedGoogle Scholar
  67. 67.
    McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.PubMedGoogle Scholar
  68. 68.
    Toro JR, Aksentijevich I, Hull K, Dean J, Kastner DL. Tumor necrosis factor receptor associated periodic syndrome: a novel syndrome with cutaneous manifestations. Arch Dermatol. 2000;136:1487–94.PubMedGoogle Scholar
  69. 69.
    Simon A, Park H, Maddipati R, et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci USA. 2010;107(21):9801–6.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Pelagatti MA, Meini A, Caorsi R, et al. Long-term clinical profile of children with the low-penetrance R92Q mutation of the TNFRSF1A gene. Arthritis Rheum. 2011;63(4):1141–50.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Aksentijevich I, Galon J, Soares M, et al. The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet. 2001;69:301–14.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Hull KM, Drewe E, Aksentijevich I, et al. The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine (Baltimore). 2002;81(5):349–68.Google Scholar
  73. 73.
    Drewe E, McDermott EM, Powell PT, Isaacs JD, Powell RJ. Prospective study of anti-tumour necrosis factor receptor superfamily 1B fusion protein, and case study of anti-tumour necrosis factor receptor superfamily 1A fusion protein, in tumour necrosis factor receptor associated periodic syndrome (TRAPS): clinical and laboratory findings in a series of seven patients. Rheumatology. 2003;42:235–9.PubMedGoogle Scholar
  74. 74.
    Drewe E, Powell RJ, McDermott EM. Comment on: failure of anti-TNF therapy in TNF receptor 1-associated periodic syndrome (TRAPS). Rheumatology (Oxford). 2007;46:1865–6.Google Scholar
  75. 75.
    Jacobelli S, Andre M, Alexandra JF, Dode C, Papo T. Failure of anti-TNF therapy in TNF receptor 1-associated periodic syndrome (TRAPS). Rheumatology (Oxford). 2007;46:1211–2.Google Scholar
  76. 76.
    Gattorno M, Pelagatti MA, Meini A, et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 2008;58(5):1516–20.PubMedGoogle Scholar
  77. 77.
    Obici L, Meini A, Cattlini M, et al. Favourable and sustained response to anakinra in tumour necrosis factor receptor-associate periodic syndrome (TRAPS) with or without AA amyloidosis. Ann Rheum Dis. 2011;70(8):1511–2.PubMedGoogle Scholar
  78. 78.
    Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an international multicenter collaborative study. Arthritis Rheum. 2011;63(11):3625–32.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Hoffmann HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29:301–5.Google Scholar
  80. 80.
    Kile RM, Rusk HA. A case of cold urticarial with an unusual family history. JAMA. 1940;114:1067–8.Google Scholar
  81. 81.
    Hoffman HM, Wanderer AA, Broide DH. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108:615–20.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Muckle TJ, Wells M. Urticaria, deafness, and amyloidosis: a new heredo-fammilial syndrome. Q J Med. 1962;31:235–48.PubMedGoogle Scholar
  83. 83.
    Neven B, Peieur AM, Quartier dit Maire P. Cryopyrinopathies: update on pathogenesis and treatment. Nature. 2008;4(9):481–9.Google Scholar
  84. 84.
    Lieberman A, Grossman ME, Silvers DN. Muckle-Wells syndrome: case report and review of cutaneous pathology. J Am Acad Dermatol. 1998;39:290–1.PubMedGoogle Scholar
  85. 85.
    Prieur AM, Griscelli C, Lampert F, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol. 1987;66:57–68.Google Scholar
  86. 86.
    Hashkes PJ, Lovell DJ. Recognition of infantile-onset multisystem inflammatory disease as a unique entity. J Pediatr. 1997;130(4):513–5.PubMedGoogle Scholar
  87. 87.
    Hoffman HM, Throne ML, Amar NJ, et al. Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes results from two sequential placebo-controlled studies. Arthritis Rheum. 2008;58(8):2443–52.PubMedGoogle Scholar
  88. 88.
    Kuemmerle-Deschner JB, Tyrrell PN, Koetter I, et al. Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome. Arthritis Rheum. 2011;63(3):840–9.PubMedGoogle Scholar
  89. 89.
    Goldbach-Mansky R, Daily NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition. N Engl J Med. 2006;355:581–92.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Goldbach-Mansky R, Shroff SD, Wilson M, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008;58:2432–342.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Thornton BD, Hoffman HM, Bhat A, Don BR. Successful treatment of renal amyloidosis due to familial cold autoinflammatory syndrome using and interleukin 1 receptor antagonist. Am J Kidney Dis. 2007;49(3):477–81.PubMedGoogle Scholar
  92. 92.
    Neven B, Marvillet I, Terrada C, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62(1):258–67.PubMedGoogle Scholar
  93. 93.
    Leslie KS, Lachmann HJ, Bruning E, et al. Phenotype, genotype, and sustained response to anakinra in 22 patients with autoinflammatory disease associated with CIAS-1/NALP3 mutations. Arch Dermatol. 2006;142:1591–7.PubMedGoogle Scholar
  94. 94.
    Kuemmerle-Deschner JB, Ramos E, Blank N, et al. Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β (beta) mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). Arthritis Res Ther. 2011;13(1):R34.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360:2416–25.PubMedGoogle Scholar
  96. 96.
    Van der Hilst JCH, Drenth JPH, Bodar EJ, et al. Serum amyloid A serum concentrations and genotype do not explain low incidence of amyloidosis in hyper-IgD syndrome. Amyloid. 2005;12(2):115–9.PubMedGoogle Scholar
  97. 97.
    Haas D, Hoffman GF. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J Rare Dis. 2006;1:13.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Normand S, Massonnet B, Delwail A, et al. Specific increase in caspase-1 activity and secretion of IL-1 family cytokines: a putative link between mevalonate kinase deficiency and inflammation. Eur Cytokine Netw. 2009;20:101–7.PubMedGoogle Scholar
  99. 99.
    Simon A, Drewe E, van der Meer JWM, et al. Simvastatin treatment for inflammatory attacks of the hyperimmunoglobulinemia D and periodic fever syndrome. Clin Pharmacol Ther. 2004;75:476–83.PubMedGoogle Scholar
  100. 100.
    van der Hilst JCH, Bodar EJ, Barron KS, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine. 2008;87(6):301–10.PubMedGoogle Scholar
  101. 101.
    Takada K, Aksentijevich I, Mahadevan V, Dean JA, Kelley RI, Kastner DL. Favorable preliminary experience with etanercept in two patients with the hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 2003;48(9):2645–51.PubMedGoogle Scholar
  102. 102.
    Bodar EJ, van der Hilst JCH, Drenth JPH, van der Meer JWM, Simon A. Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med. 2005;63(7):260–4.PubMedGoogle Scholar
  103. 103.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.PubMedGoogle Scholar
  104. 104.
    Martin WJ, Shaw O, Liu X, Steiger S, Harper JL. Monosodium urate monohydrate crystal-recruited noninflammatory monocytes differentiate in M1-like proinflammatory macrophages in a peritoneal murine model of gout. Arthritis Rheum. 2011;63(5):1322–32.PubMedGoogle Scholar
  105. 105.
    Akpolat T, Akkoyunlu M, Akpolat I, Dilek M, Odabas AR, Ozen S. Renal Behçet’s disease: a cumulative analysis. Semin Arthritis Rheum. 2002;31(5):317–37.PubMedGoogle Scholar
  106. 106.
    Greenstein AJ, Sachar DB, Nannan Pandy AK, et al. Amyloidosis and inflammatory bowel disease. A 50 year experience with 25 patients. Medicine. 1992;71(5):261–70.PubMedGoogle Scholar
  107. 107.
    Wester AL, Vatn MH, Fausa O. Secondary amyloidosis in inflammatory bowel disease: a study of 18 patients admitted to Rikshospitalet University Hospital, Oslo, from 1962-1998. Inflamm Bowel Dis. 2001;7(4):295–300.PubMedGoogle Scholar
  108. 108.
    Basturk T, Ozagari A, Ozturk T, Kusaslan R, Unsal A. Crohn’s disease and secondary amyloidosis: early complication? A case report and review of the literature. J Ren Care. 2009;35(3):147–50.PubMedGoogle Scholar
  109. 109.
    Fidalgo C, Calado J, Cravo M. Secondary amyloidosis in a patient with long duration Crohn’s disease treated with infliximab. BioDrugs. 2010;24(Supp 1):15–7.PubMedGoogle Scholar
  110. 110.
    Iizuka M, Sagara S, Etou T. Efficacy of scheduled infliximab maintenance therapy on systemic amyloidosis associated with Crohn’s disease. Inflamm Bowel Dis. 2011;17(7):E67–8.PubMedGoogle Scholar
  111. 111.
    Sattianayagam PT, Gillmore JD, Pinney JH, et al. Inflammatory bowel disease and systemic AA amyloidosis. Dig Dis Sci. 2013;58(6):1689–97.PubMedGoogle Scholar
  112. 112.
    Fitchen JH. Amyloidosis and granulomatous ileocolitis. Regression after surgical removal of the involved bowel. N Engl J Med. 1975;292(7):352–3.PubMedGoogle Scholar
  113. 113.
    Manelstam P, Simmons DE, Mitchell B. Regression of amyloid in Crohn’s disease after bowel resection. A 19-year follow-up. J Clin Gastroenterol. 1989;11(3):324–6.Google Scholar
  114. 114.
    Bene L, Falus A, Baffy N, Fulop AK. Cellular and molecular mechanisms in the two major forms of inflammatory bowel disease. Pathol Oncol Res. 2011;17(3):463–72.PubMedGoogle Scholar
  115. 115.
    Niess JH. Role of mucosal dendritic cells in inflammatory bowel disease. World J Gastroenterol. 2008;14:5138–48.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Kraus TA, Toy L, Chan L, et al. Failure to induce oral tolerance in Crohn’s disease and ulcerative colitis patients: possible genetic risk. Ann NY Acad Sci. 2004;1029:225–38.PubMedGoogle Scholar
  117. 117.
    Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol. 2000;164:966–72.PubMedGoogle Scholar
  118. 118.
    Adler J, Rangwalla SC, Dwamena BA, Higgins PDR. The prognostic power of the NOD2 genotype for complicated Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2011;106:699–712.PubMedGoogle Scholar
  119. 119.
    Maeda S, Hsu LC, Liu H, et al. Nod2 mutation in Crohn’s disease potentiates NF-κ (kappa) B activity and IL-1β (beta) processing. Science. 2005;300:1584–7.Google Scholar
  120. 120.
    Rainfray M, Meyrier A, Valeyre D, Tazi A, Battesti JP. Renal amyloidosis complicating sarcoidosis. Thorax. 1998;43:422–3.Google Scholar
  121. 121.
    Komatsuda A, Wakui H, Ohtani H, et al. Amyloid A-type renal amyloidosis in a patient with sarcoidosis: report of a case and review of the literature. Clin Nephrol. 2003;60(4):284–8.PubMedGoogle Scholar
  122. 122.
    Rothkrantz-kos S, van Dieijen-Visser MP, Mulder PGH, Drent M. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem. 2003;49(9):1510–7.PubMedGoogle Scholar
  123. 123.
    Bargagli E, Magi B, Olivieri C, Bianchi N, Landi C, Rottoli P. Analysis of serum amyloid A in sarcoidosis patients. Respir Med. 2011;105:775–80.PubMedGoogle Scholar
  124. 124.
    Devergne O, Emilie D, Peuchmaur M, Crevon MC, D’Agay MF, Galanaud P. Production of cytokines in sarcoid lymph nodes: preferential expression of interleukin-1 beta and interferon-gamma genes. Hum Pathol. 1992;23(3):317–23.PubMedGoogle Scholar
  125. 125.
    Foss HD, Herbst H, Araujo I, et al. Monokine expression in Langerhans’ cell histiocytosis and sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease). J Pathol. 1996;179:60–5.PubMedGoogle Scholar
  126. 126.
    Rocken C, Wieker K, Grote HJ, Muller G, Franke A, Roessner A. Rosai-Dorfman disease and generalized AA amyloidosis: a case report. Hum Pathol. 2000;31:621–4.PubMedGoogle Scholar
  127. 127.
    Poitou C, Viguerie N, Cancello R, et al. Serum amyloid A: production by human white adipocyten and regulation by obesity and nutrition. Diabetologia. 2005;48:519–28.PubMedGoogle Scholar
  128. 128.
    Upragarin N, Landman WJ, Gaastra W, Gruys E. Extrahepatic production of acute phase serum amyloid A. Histol Histopathol. 2005;20:1295–307.PubMedGoogle Scholar
  129. 129.
    Faty A, Ferre P, Commans S. The acute phase protein serum amyloid A induces lipolysis and inflammation in human adipocytes through distinct pathways. PLoS One. 2012;7(4):e34031.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Alsina E, Martin M, Panadés M, Fernández E. Renal AA amyloidosis secondary to morbid obesity? Clin Nephrol. 2009;72(4):312–4.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Inflammatory Disease SectionNational Human Genome Research Institute, National Institutes of HealthBethesdaUSA
  2. 2.Inflammatory Disease SectionNational Human Genome Research Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations