Skip to main content

Nanotechnology in Water Treatment

  • Chapter

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 7))

Abstract

Industrialization and excessive use of pesticides for boosting agricultural production has adversely affected the ecosystem, thus polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods however generate byproducts that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful byproducts are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aderhold D, Williams CJ, Edyvean RGJ (1996) The removal of heavy-metal ions by seaweeds and their derivatives. Bioresour Technol 58(1):1–6

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143(1–2):48–67

    Article  CAS  Google Scholar 

  • Aklil A, Mouflih M, Sebti S (2004) Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. J Hazard Mater 112(3):183–190

    Article  CAS  Google Scholar 

  • Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18

    Article  CAS  Google Scholar 

  • Allen SJ, Whitten L, McKay G (1998) The production and characterisation of activated carbons: a review. Dev Chem Eng Min Process 6(5):231–261

    Article  Google Scholar 

  • Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23(12):1989–1998

    Article  CAS  Google Scholar 

  • Apiratikul R, Pavasant P (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99(8):2766–2777

    Article  CAS  Google Scholar 

  • Araújo MM, Teixeira JA (1997) Trivalent chromium sorption on alginate beads. Int Biodeter Biodegr 40(1):63–74

    Article  Google Scholar 

  • Argun ME, Dursun S (2008) A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresour Technol 99(7):2516–2527

    Article  CAS  Google Scholar 

  • Ayoub GM, Semerjian L, Acra A, El Fadel M, Koopman B (2001) Heavy metal removal by coagulation with seawater liquid bittern. J Environ Eng 127(3):196–207

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  CAS  Google Scholar 

  • Bablon G (1991) Practical application of ozone: principles and case studies. Ozone in water treatment application and engineering. AWWARF

    Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Baker MN, Taras MJ (1981) The quest for pure water. American Water Works Association, Denver

    Google Scholar 

  • Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76(2–4):189–199

    Article  CAS  Google Scholar 

  • Banerjee S, Gopal J, Muraleedharan P, Tyagi AK, Raj B (2006) Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Curr Sci 90(10):1378–1383

    CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009a) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009b) Nanotechnology applications in pollution sensing and degradation in agriculture. Environ Chem Lett 7(3):191–204

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009c) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2011) Zinc stannate nanostructures: hydrothermal synthesis. Sci Technol Adv Mater 12:013004

    Article  Google Scholar 

  • Baruah S, Thanachayanont C, Dutta J (2008) Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci Technol Adv Mater 9(2):025009

    Article  CAS  Google Scholar 

  • Baruah S, Kitsomboonloha R, Myint MTZ, Dutta J (2009) Nanoparticle applications for environmental control and remediation. In: Chaughule RS, Ramanujan RV (eds) Nanoparticles: synthesis, characterization and applications. American Scientific Publishers, Valencia, pp 195–216

    Google Scholar 

  • Baruah S, Jaisai M, Imani R, Nazhad MM, Dutta J (2010) Photocatalytic paper using zinc oxide nanorods. Sci Technol Adv Mater 11:055002

    Article  CAS  Google Scholar 

  • Baruah S, Jaisai M, Dutta J (2012) Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods. Catal Sci Technol 2(5):918–921

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 140(2):114–131

    Article  CAS  Google Scholar 

  • Blocki SW (1993) Hydrophobic zeolite adsorbent: a proven advancement in solvent separation technology. Environ Prog 12(3):226–230

    Article  CAS  Google Scholar 

  • Bolton JR (1999) UV application handbook. Bolton Photosciences Inc, Ayr

    Google Scholar 

  • Bose P, Aparna Bose M, Kumar S (2002) Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Adv Environ Res 7(1):179–195

    Article  CAS  Google Scholar 

  • Brame J, Li Q, Alvarez PJJ (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):618–624

    Article  CAS  Google Scholar 

  • Bukhari Z, Hargy TM, Bolton JR, Dussert B, Clancy JL (1999) Medium-pressure UV for oocyst inactivation. J AWWA 91(3):86–94

    CAS  Google Scholar 

  • Burch JD, Thomas KE (1998) Water disinfection for developing countries and potential for solar thermal pasteurization. Solar Energy 64(1–3):87–97

    Article  Google Scholar 

  • Camel V, Bermond A (1998) The use of ozone and associated oxidation processes in drinking water treatment. Water Res 32(11):3208–3222

    Article  CAS  Google Scholar 

  • Cantor KP, Lynch CF, Hildesheim ME, Dosemeci M, Lubin J, Alavanja M, Craun G (1998) Drinking water source and chlorination byproducts I. Risk of bladder cancer. Epidemiology 9(1):21–28

    Article  CAS  Google Scholar 

  • Cantor KP, Lynch CF, Hildesheim ME, Dosemeci M, Lubin J, Alavanja M, Craun G (1999) Drinking water source and chlorination byproducts in Iowa. III. Risk of brain cancer. Am J Epidemiol 150(6):552–560

    Article  CAS  Google Scholar 

  • Chang C, Ku Y (1994) Adsorption kinetics of cadmium chelates on activated carbon. J Hazard Mater 38(3):439–451

    Article  CAS  Google Scholar 

  • Choi J-W, Yang K-S, Kim D-J, Lee CE (2009) Adsorption of zinc and toluene by alginate complex impregnated with zeolite and activated carbon. Curr Appl Phys 9(3):694–697

    Article  Google Scholar 

  • Chojnacki A, Chojnacka K, Hoffmann J, Górecki H (2004) The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Min Eng 17(7–8):933–937

    Article  CAS  Google Scholar 

  • Clancy JL, Hargy TM, Marshall MM, Dyksen JE (1998) UV light inactivation of Cryptosporidium oocysts. J Am Water Works Assoc 90(9):92–102

    CAS  Google Scholar 

  • Cochrane EL, Lu S, Gibb SW, Villaescusa I (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J Hazard Mater 137(1):198–206

    Article  CAS  Google Scholar 

  • Corapcioglu MO, Huang CP (1987) The adsorption of heavy metals onto hydrous activated carbon. Water Res 21(9):1031–1044

    Article  CAS  Google Scholar 

  • Coulson JM, Richardson JF, Backhurst JR, Harker JH (1991) Chemical engineering, vol 2, 4th edn. Pergamon Press, Oxford, pp 623–664

    Google Scholar 

  • DeMers LD, Renner RC (1992) Alternative disinfection technologies for small drinking water systems. AWWARF/AWWA, Denver

    Google Scholar 

  • Di Natale F, Lancia A, Molino A, Musmarra D (2007) Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J Hazard Mater 145(3):381–390

    Article  CAS  Google Scholar 

  • Domingue EL (1988) Effects of three oxidizing biocides on Legionella pneumophila, serogroup 1. Appl Environ Microbiol 40:11–30

    Google Scholar 

  • Dwairi RAA, Al-Rawajfeh AE (2012) Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. J Univ Chem Technol Metall 47(1):69–76

    Google Scholar 

  • Eddy MTE (2004) Waste water engineering: treatment and reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Ellis KV (1991) Water disinfection: a review with some consideration of the requirements of the third world. Crit Rev Environ Control 20(5–6):341–407

    Article  CAS  Google Scholar 

  • EPA (ed) (1999) Alternative Disinfectants and Oxidants. Environmental Protection Agency, Washington, DC, pp 3–52

    Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Article  CAS  Google Scholar 

  • Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem 184(3):313–321

    Article  CAS  Google Scholar 

  • Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal Environ 59(1–2):81–89

    Article  CAS  Google Scholar 

  • Farooq S et al (1977) The effect of ozone bubbles on disinfection. Water Ozone Sci Eng 9(2):233

    CAS  Google Scholar 

  • Fiscetti M (2007) Fresh from the sea. Sci Am 297:118–119

    Article  Google Scholar 

  • Frasier G, Lloyd M (1983) Handbook of water harvesting. U.S. Dept. of Agriculture, Washington, DC

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  • Gadgil A (1997) Field-testing UV disinfection of drinking water. Water Engineering Development Center, University of Loughborough, UK. LBNL 40360

    Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9(1):1–12

    Article  CAS  Google Scholar 

  • Gelover S, Gomez LA, Reyes K, Teresa Leal M (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17):3274–3280

    Article  CAS  Google Scholar 

  • Glaze WH, Kang JW (1988) Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J AWWA 88(5):57–63

    Google Scholar 

  • Grant DC, Skriba MC, Saha AK (1987) Removal of radioactive contaminants from West Valley waste streams using natural zeolites. Environ Prog 6(2):104–109

    Article  CAS  Google Scholar 

  • Guan Q, Wu D, Lin Y, Chen X, Wang X, Li C, He S, Kong H (2009) Application of zeolitic material synthesized from thermally treated sediment to the removal of trivalent chromium from wastewater. J Hazard Mater 167(1–3):244–249

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manage 90(8):2313–2342

    Article  CAS  Google Scholar 

  • Gyürék LL, Li H, Belosevic M, Finch GR (1999) Ozone inactivation kinetics of Cryptosporidium in phosphate buffer. J Environ Eng ASCE 125(10):913–924

    Article  Google Scholar 

  • Han R, Zou L, Zhao X, Xu Y, Xu F, Li Y, Wang Y (2009) Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chem Eng J 149(1–3):123–131

    Article  CAS  Google Scholar 

  • Hebert A, Forestier D, Lenes DE, Benanou D, Jacob S, Arfi C, Lambolez L, Levi Y (2010) Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res 44(10):3147–3165

    Article  CAS  Google Scholar 

  • Henthorne L (2009) The current state of desalination. International Desalination Association, Topsfield

    Google Scholar 

  • Hijnen WAM, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40(1):3–22

    Article  CAS  Google Scholar 

  • Hildesheim ME, Cantor KP, Lynch CF, Dosemeci M, Lubin J, Alavanja M, Craun G (1998) Drinking water source and chlorination byproducts II. Risk of colon and rectal cancers. Epidemiology 9(1):29–35

    Article  CAS  Google Scholar 

  • Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2(11):663–664

    Article  CAS  Google Scholar 

  • Hirano S (2009) A current overview of health effect research on nanoparticles. Environ Health Prev Med 14(4):223–225

    Article  Google Scholar 

  • Hoehn RC, Rosenblatt AA, Gates DJ (1996) AWWA water quality technology conference, Boston

    Google Scholar 

  • Hoigné J, Bader H (1976) The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res 10(5):377–386

    Article  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41(8):819–825

    Article  CAS  Google Scholar 

  • Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. CRC Press, New York

    Google Scholar 

  • http://dictionary.reference.com/browse/desalination

  • http://geonames.usgs.gov/domestic/faqs.htm

  • http://www.drinking-water.org/html/en/Treatment/Chemical-Disinfection-Oxidants-technologies.html

  • http://www.eoearth.org/article/Human_population_explosion

  • http://www.euwfd.com/html/lakes_and_reservoirs.html

  • http://www.fumatech.com/EN/Membrane-technology/Membrane-processes/Nanofiltration/

  • http://www.h2ome.net/en/2012/02/opportunities-aplenty/

  • http://www.inchem.org/documents/ehc/ehc/ehc216.htm#SectionNumber:1.3

  • http://www.lenntech.com/microfiltration-and-ultrafiltration.htm

  • http://www.merriam-webster.com/dictionary/river

  • http://www.observatorynano.eu/project/document/2013/

  • http://www.safewater.org/PDFS/resourcesknowthefacts/What+is+Chlorination.pdf. Accessed 2013, 2 Sept

  • http://www.seccua.de/download/press/2010_04_WCP_Seccua_4922.pdf

  • http://www.techneau.org/fileadmin/files/Publications/Publications/Deliverables/D5.3.4b.pdf

  • http://www.unep.or.jp/ietc/publications/short_series/lakereservoirs-1/5.asp

  • http://www.water.siemens.com/en/products/membrane_filtration_separation/microfiltration_membrane_systems/

  • http://www.who.int/infectious-disease-report/pages/textonly.html

  • http://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf

  • http://www.womensvoices.org/wp-content/uploads/2010/05/Disinfectant-Overkill.pdf

  • Huang CP, Blankenship DW (1984) The removal of mercury(II) from dilute aqueous solution by activated carbon. Water Res 18(1):37–46

    Article  CAS  Google Scholar 

  • Huang CP, Wu MH (1977) The removal of chromium(VI) from dilute aqueous solution by activated carbon. Water Res 11(8):673–679

    Article  CAS  Google Scholar 

  • Huang J, Wang L, Ren N, Ma F, Juli (1997) Disinfection effect of chlorine dioxide on bacteria in water. Water Res 31(3):607–613

    Article  CAS  Google Scholar 

  • Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127(1–3):89–101

    Article  CAS  Google Scholar 

  • Ibanez JA, Litter MI, Pizarro RA (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria. J Photochem Photobiol A Chem 157(1):81–85

    Article  CAS  Google Scholar 

  • Karanis P, Maier WA, Seitz HM, Schoenen D (1992) UV sensitivity of protozoan parasites. Aqua 41:95–100

    CAS  Google Scholar 

  • Katz J (1980) Ozone and chlorine dioxide technology for disinfection of drinking water. Noyes Data Corporation, Park Ridge

    Google Scholar 

  • KeleSolgu S (2007) Comparative adsorption studies of heavy metal ions on chitin and chitosn biopolymers. Izmir Institute of Technology, Izmir

    Google Scholar 

  • Kinman RN (1975) Water and wastewater disinfection with ozone: a critical review. Crit Rev Environ Control 5:141–152

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521

    Article  CAS  Google Scholar 

  • Koros WJ, Ma YH, Shimidzu T (1996) Terminology for membranes and membrane processes (IUPAC). Pure Appl Chem 86(7):1479–1489

    Google Scholar 

  • Krishna V, Yanes D, Imaram W, Angerhofer A, Koopman B, Moudgil B (2008) Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Appl Catal Environ 79(4):376–381

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006a) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006b) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Article  CAS  Google Scholar 

  • Lee CK, Low KS, Kek KL (1995) Removal of chromium from aqueous solution. Bioresour Technol 54(2):183–189

    Article  CAS  Google Scholar 

  • Letterman RD (1999) Water quality and treatment, 5th edn. American Water Works Association and McGraw-Hill, New York

    Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Loge FJ, Emerick RW, Darby JL (1999) Ultraviolet disinfection of secondary wastewater effluent: prediction of performance and design. Water Environ Res 68:900–916

    Article  Google Scholar 

  • Lonnen J, Kilvington S, Kehoe SC, Al-Touati F, McGuigan KG (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39(5):877–883

    Article  CAS  Google Scholar 

  • Lykins BW, Griese MH (1986) Using chlorine dioxide for trihalomethane control. J Am Water Works Assoc 78(6):88–93

    CAS  Google Scholar 

  • Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143(1–2):240–245

    Article  CAS  Google Scholar 

  • Maliou E, Malamis M, Sakellarides PO (1992) Lead and cadmium removal by ion exchange. Water Sci Technol 25(1):133–138

    CAS  Google Scholar 

  • Mamane H, Colorni A, Bar I, Ori I, Mozes N (2010) The use of an open channel, low pressure UV reactor for water treatment in low head recirculating aquaculture systems (LH-RAS). Aquac Eng 42(3):103–111

    Article  Google Scholar 

  • Marcucci M, Ciabatti I, Matteucci A, Vernaglione G (2003) Membrane technologies applied to textile wastewater treatment. Ann N Y Acad Sci 984:53–64

    Article  CAS  Google Scholar 

  • Medina-Ramón M, Zock JP, Kogevinas M, Sunyer J, Torralba Y, Borrell A, Burgos F, Antó JM (2005) Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case-control study. Occup Environ Med 62(9):598–606

    Article  Google Scholar 

  • Ming DW, Dixon JB (1987) Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clay Miner 35(6):463–468

    Article  CAS  Google Scholar 

  • Misdan N, Lau WJ, Ismail AF (2012) Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects. Desalination 287:228–237

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811

    Article  CAS  Google Scholar 

  • Mohanty K, Das D, Biswas M (2006) Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2):119–132

    Article  CAS  Google Scholar 

  • Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y (1998) Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Anal Sci 14(4):691–698

    Article  CAS  Google Scholar 

  • Oller I, Gernjak W, Maldonado MI, Pérez-Estrada LA, Sánchez-Pérez JA, Malato S (2006) Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J Hazard Mater 138(3):507–517

    Article  CAS  Google Scholar 

  • Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294

    Article  CAS  Google Scholar 

  • Paajanen A, Lehto J, Santapakka T, Morneau JP (1997) Sorption of cobalt on activated carbons from aqueous solutions. Sep Sci Technol 32(1–4):813–826

    Article  Google Scholar 

  • Pacific climate Impacts Consortium: 2004

    Google Scholar 

  • Park HG, Chae MY (2004) Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol 79:1080–1083

    Article  CAS  Google Scholar 

  • Park HG, Kim TW, Chae MY, Yoo I-K (2007) Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem 42(10):1371–1377

    Article  CAS  Google Scholar 

  • Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Low-cost adsorbents for waste and wastewater treatment: a review. Sci Total Environ 116(1–2):31–52

    Article  CAS  Google Scholar 

  • Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164(2):105–110

    Article  CAS  Google Scholar 

  • Rahman MA, Muneer M (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide. Desalination 181(1–3):161–172

    Article  CAS  Google Scholar 

  • Ranganathan K (2000) Chromium removal by activated carbons prepared from Casurina equisetifolia leaves. Bioresour Technol 73(2):99–103

    Article  CAS  Google Scholar 

  • Rincon AG, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal Environ 49(2):99–112

    Article  CAS  Google Scholar 

  • Rouquerol F (1999) Adsorption by powders and porous solids. Academic Press, London, pp 1–21, 355–361, 378–382

    Google Scholar 

  • Rushton A, Ward AS, Holdich RG (2000) Solid–liquid filtration and separation technology. Wiley VCH, Weinheim

    Google Scholar 

  • Sawyer NC, Mc Carty PL, Parkin GF (1994) Chemistry for environmental engineering. McGraw-Hill International Edition, Singapore

    Google Scholar 

  • Schindler DW, Vallentyne JR (2004) Algal bowl: overfertilization of the worlds freshwaters and estuaries. University of Alberta Press, Alberta

    Google Scholar 

  • Semerjian L, Ayoub GM (2003) High-pH-magnesium coagulation-flocculation in wastewater treatment. Adv Environ Res 7(2):389–403

    Article  CAS  Google Scholar 

  • Severin BF, Suidan MT, Engelbrecht RS (1983) Effects of temperature on ultraviolet light disinfection. Environ Sci Technol 17(12):717–721

    Article  CAS  Google Scholar 

  • Singh S, Henderson RK, Baker A, Stuetz RM, Khan SJ (2012) Characterisation of reverse osmosis permeates from municipal recycled water systems using fluorescence spectroscopy: implications for integrity monitoring. J Membr Sci 421–422:180–189

    Article  CAS  Google Scholar 

  • Sobsey MD (1989) Inactivation of health-related microorganisms in water by disinfection processes. Water Sci Technol 21(3):179–195

    CAS  Google Scholar 

  • Stöcker M (2005) Gas phase catalysis by zeolites. Microporous Mesoporous Mater 82(3):257–292

    Article  CAS  Google Scholar 

  • Sugunan A, Dutta J (2008) Pollution treatment, remediation, and sensing. In: Harald K (ed) Nanotechnology, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  • Tzanavaras P, Themelis D, Kika F (2007) Review of analytical methods for the determination of chlorine dioxide. Cent Eur J Chem 5(1):1–12

    Article  CAS  Google Scholar 

  • UZUN I, G¨UZEL F (2000) Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk J Chem 24:291–297

    CAS  Google Scholar 

  • Vaca Mier M, López Callejas R, Gehr R, Jiménez Cisneros BE, Alvarez PJJ (2001) Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange. Water Res 35(2):373–378

    Article  CAS  Google Scholar 

  • Vijaya Y, Popuri SR, Boddu VM, Krishnaiah A (2008) Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr Polym 72(2):261–271

    Article  CAS  Google Scholar 

  • Volesky B (2003) Sorption by biomass. BV Sorbex Inc, Montreal

    Google Scholar 

  • von Sonntag C, Kolch A, Gebel J, Oguma K, Sommer R (2003) The photochemical basis of UV disinfection, European conference of UV radiation. Effects and technologies, Karlsruhe, Sept 22–24; Karlsruhe, 2003

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  CAS  Google Scholar 

  • Wang LK, Vaccari DA, Li Y, Shammas NK (2004) Chemical precipitation and physiochemical treatment processes, vol 3. Humana Press, Totowa, pp 141–198

    Google Scholar 

  • White I (2009) Decentralised environmental technology adoption: the household experience with rainwater harvesting. Griffit University, Brisbane

    Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Tech 40(14):4336–4345

    Article  CAS  Google Scholar 

  • World Health Organization (ed) (2004) Guidelines for drinking water quality, vol 1, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Xie J, Li C, Chi L, Wu D (2012) Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water. Fuel 103(1):480–485

    Google Scholar 

  • Zhao Y, Anichina J, Lu X, Bull RJ, Krasner SW, Hrudey SE, Li X-F (2012) Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection. Water Res 46(14):4351–4360

    Article  CAS  Google Scholar 

  • Zhou H, Smith DW (2002) Advanced technologies in water and wastewater treatment. J Environ Eng Sci 1:247–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baruah, S., Khan, M.N., Dutta, J. (2015). Nanotechnology in Water Treatment. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutants in Buildings, Water and Living Organisms. Environmental Chemistry for a Sustainable World, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-19276-5_2

Download citation

Publish with us

Policies and ethics