Skip to main content

A Proposal for Contextual Grammatical Inference

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

  • 1977 Accesses

Abstract

Grammatical Inference deals with the learning of formal languages from data. Research in this field has mainly reduced the problem of language learning to syntax learning. Taking into account that the theoretical results obtained in Grammatical Inference show that learning formal languages only from syntax is generally hard, in this paper we propose to also take into account contextual information during the language learning process. First, we review works in the area of Artificial Intelligence that use the concept of context, and then, we present the theoretical, algorithmic and practical aspects of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75, 87–106 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D., Becerra-Bonache, L.: Learning meaning before syntax. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Angluin, D., Becerra-Bonache, L.: A model of Semantics and Corrections in Language Learning. Technical Report YALE/DCS/TR-1425, Computer Science Department, Yale University (2010)

    Google Scholar 

  4. Angluin, D., Becerra-Bonache, L.: Effects of meaning-preserving corrections on language learning. In: International Conference on Computational Natural Language Learning (CONLL), pp. 97–105 (2011)

    Google Scholar 

  5. Akman, V., Surav, M.: The use of Situation Theory in Context Modeling. Computational Intelligence 13(3), 427–438 (1997)

    Article  Google Scholar 

  6. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983)

    Google Scholar 

  7. Barwise, J.: Conditionals and conditional information. In: Traugott, E.C., Ferguson, C.A., Reilly, J.S. (eds.) On Conditionals, pp. 21–54. Cambridge University Press, Cambridge (1986)

    Chapter  Google Scholar 

  8. Becerra-Bonache, L., Fromont, E., Habrard, A., Perrot, M., Sebban, M.: Speeding up Syntactic Learning Using Contextual Information. International Colloquium on Grammatical Inference (ICGI) 21, 49–53 (2012)

    Google Scholar 

  9. Buvač, S.: Quantificational logic of context. In: National Conference on Artificial Intelligence (AAAI), Portland, Oregon, 4–8 August 1996, vol. 1, pp. 600–606 (1996)

    Google Scholar 

  10. Buvač, S., Mason, I.: Propositional logic of context. In: National Conference on Artificial Intelligence (AAAI), pp. 412–419 (1993)

    Google Scholar 

  11. Buvač, S., Buvač, V., Mason, I.: Metamathematics of Contexts. Fundamenta Informaticae 23(3), 263–301 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: International Colloquium on Grammatical Inference (ICGI), pp. 139–152 (1994)

    Google Scholar 

  13. Chen, D.L.: Learning Language from Perceptual Context. Department of Computer Sciences, University of Texas at Austin, PhD. proposal (2009)

    Google Scholar 

  14. Chouinard, M.M., Clark, E.V.: Adult reformulations of child errors as negative evidence. Journal of Child Language 30, 637–669 (2003)

    Article  Google Scholar 

  15. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  16. Devlin, K.: Logic and information. Cambridge University Press, New York (1991)

    MATH  Google Scholar 

  17. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality + compatibility. Artificial Intelligence 127(2), 221–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Giunchiglia, F.: Contextual reasoning. Epistemologia, XVI, pp. 345–364 (1993)

    Google Scholar 

  19. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  21. Goldwasser, D., Roth, D.: Learning from natural instructions. Machine Learning 94(2), 205–232 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guha, R.V., Lenat, D.B.: Cyc: A midterm report. AI Magazine 11(3), 32–59 (1990)

    Google Scholar 

  23. Guha, R.V.: Contexts: A formalization and some applications. Stanford PhD Thesis (1991)

    Google Scholar 

  24. MacWhinney, B.: The CHILDES Project: Tools for analyzing talk, 3rd edn. Lawrence Erlbaum Associates, Mahwah (2000)

    Google Scholar 

  25. Makarios, S.: A Model Theory for a Quantified Generalized Logic of Contexts. Technical Report KSL-06-08, Knowledge Systems, AI Laboratory (2006)

    Google Scholar 

  26. McCarthy, J.: Generality in Artificial. Communication of the ACM 30(12), 1029–1035 (1987)

    Article  Google Scholar 

  27. McCarthy, J.: Notes on Formalizing Context. In: Proceedings of the Thirteenth International Joint Conference in Artificial Intelligence (IJCAI-1993), Chambery, France, pp. 555–560 (1993)

    Google Scholar 

  28. Nickles, M., Rettinger, A.: Interactive Relational Reinforcement Learning of Concept Semantics. Machine Learning 94(2), 169–204 (2014)

    Article  MathSciNet  Google Scholar 

  29. Oncina, J., García, P.: Identifying regular languages in polynomial time. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition, pp. 99–108. World Scientific Publishing, Singapore (1992)

    Google Scholar 

  30. Stolcke, A., Feldman, J.A., Lakoff, G., Weber, S.: Miniature Language Acquisition: A Touchstone for Cognitive Science. Cognitive Science, pp. 686–693 (1994)

    Google Scholar 

  31. Surav, M., Akman, V.: Modeling Context with Situations. In: IJCAI-95 Workshop on Modeling Context in Knowledge Representation and Reasoning, Research Report 95/11, LAFORIA, pp. 145–156 (1995)

    Google Scholar 

  32. Valiant, L.G.: A Theory of the Learnable. Communication of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  33. Vanzo, A., Croce, D., Basili, R.: A context-based model for sentiment analysis in Twitter. In: International Conference on Computational Linguistics (COLING), pp. 2345–2354 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Becerra-Bonache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Becerra-Bonache, L., Galván, M., Jacquenet, F. (2015). A Proposal for Contextual Grammatical Inference. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics