Skip to main content

Axiomatization of Typed First-Order Logic

  • Conference paper
FM 2015: Formal Methods (FM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9109))

Included in the following conference series:


This paper contributes to the theory of typed first-order logic. We present a sound and complete axiomatization for a basic typed logic lifting restrictions imposed by previous results. As a second contribution, this paper provides complete axiomatizations for the type predicates instance T , exactInstance T , and functions cast T indispensable for reasoning about object-oriented programming languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

    Google Scholar 

  2. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in smt solvers. In: Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning, SMT 2008/BPR 2008, pp. 1–5. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Bobot, F., Paskevich, A.: Expressing Polymorphic Types in a Many-Sorted Language. In: Tinelli and Sofronie-Stokkermans [9], pp. 87–102

    Google Scholar 

  4. Esparza, J., Majumdar, R. (eds.): TACAS 2010. LNCS, vol. 6015. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  5. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Wiley (1987)

    Google Scholar 

  6. Giese, M.A.: A calculus for type predicates and type coercion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 123–137. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and logical encoding. In: Esparza and Majumdar [4], pp. 312–327

    Google Scholar 

  8. Schmidt, A.: Über deduktive Theorien mit mehreren Sorten von Grunddingen. Math. Annalen 115, 485–506 (1938)

    Article  Google Scholar 

  9. Tinelli, C., Sofronie-Stokkermans, V. (eds.): FroCoS 2011. LNCS, vol. 6989. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  10. Walther, C.: A Many-Sorted Calculus Based on Resolution and Paramodulation. Pitman / Morgan Kaufmann (1987)

    Google Scholar 

  11. Weidenbach, C.: First-order tableaux with sorts. Logic Journal of the IGPL 3(6), 887–906 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter H. Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmitt, P.H., Ulbrich, M. (2015). Axiomatization of Typed First-Order Logic. In: Bjørner, N., de Boer, F. (eds) FM 2015: Formal Methods. FM 2015. Lecture Notes in Computer Science(), vol 9109. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19248-2

  • Online ISBN: 978-3-319-19249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics