Advertisement

Generation, Characterization and Use of Atom-Resonant Indistinguishable Photon Pairs

  • Morgan W. Mitchell
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

We describe the generation of atom-resonant indistinguishable photon pairs using nonlinear optical techniques, their spectral purification using atomic filters, characterization using multi-photon interference, and application to quantum-enhanced sensing with atoms. Using either type-I or type-II cavity-enhanced spontaneous parametric down-conversion, we generate pairs of photons in the resonant modes of optical cavities with linewidths comparable to the natural linewidths of strong atomic transitions. The cavities and pump lasers are tuned so that emission occurs in a mode or a pair of orthogonally-polarized modes that are resonant to the \(\text {D}_1\) line, at 794.7 nm. The emission from these frequency-degenerate modes is separated from other cavity emission using ultra-narrow atomic frequency filters, either a Faraday anomalous dispersion optical filter (FADOF) with a 445 MHz linewidth and 57 dB of out-of-band rejection or an induced dichroism filter with an 80 MHz linewidth and \(\ge \) 35 dB out-of-band rejection. Using the type-I source, we demonstrate interference of photon pair amplitudes against a coherent state and a new method for full characterization of the temporal wave-function of narrow-band photon pairs. With the type-II source we demonstrate high-visibility super-resolving interference, a high-fidelity atom-tuned NooN state, and quantum enhanced sensing of atoms using indistinguishable photon pairs.

Keywords

Fisher Information Faraday Rotation Photon Pair Quarter Wave Plate Spectral Purity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work reported here involved many people over many years. I would especially like to thank Marta Abad, Federica Beduini, Alessandro Cerè, Nicolas Godbout, Valentina Parigi, Ana Predojević, Chiara Vitelli, Florian Wolfgramm, Xinxing Xing, and Joanna Zielińska, each of whom contributed something unique and essential to the work reported here, e.g. inventing a first-of-its-kind source or filter, providing insights into the physics of atomic optical instruments, or persuading difficult lasers (and their suppliers) to cooperate with our plans. Aephraim Steinberg was essential to getting the photon pair research started. The contributions of Zehui Zhai, Yannick de Icaza Astiz and Gianvito Lucivero are also much appreciated. The research was supported by various Catalan, Spanish, European, Canadian and philanthropic grants over the years. The writing of this chapter was supported by the Spanish MINECO project MAGO (Refer FIS2011-23520), by the European Research Council project AQUMET, and by Fundació Privada CELLEX.

References

  1. 1.
    Y.H. Shih, C.O. Alley, New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988). doi: 10.1103/PhysRevLett.61.2921 ADSCrossRefGoogle Scholar
  2. 2.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987). doi: 10.1103/PhysRevLett.59.2044 ADSCrossRefGoogle Scholar
  3. 3.
    D. Bouwmeester et al., Experimental quantum teleportation. Nature 390, 575–579 (1997). doi: 10.1038/37539 ADSCrossRefGoogle Scholar
  4. 4.
    J.-W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003). doi: 10.1038/nature02054 ADSCrossRefGoogle Scholar
  6. 6.
    M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004). doi: 10.1038/nature02493
  7. 7.
    S. Aaronson, A. Arkhipov. The Computational Complexity of Linear Optics (2010)Google Scholar
  8. 8.
    L.-A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986). doi: 10.1103/PhysRevLett.57.2520 ADSCrossRefGoogle Scholar
  9. 9.
    The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011). doi: 10.1038/nphys2083
  10. 10.
    J. Aasi et al., Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013). doi: 10.1038/nphoton.2013.177
  11. 11.
    S. Braunstein, A. Pati, Quantum Information with Continuous Variables (Springer, New York, 2010)Google Scholar
  12. 12.
    F. Wolfgramm et al., Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010). doi: 10.1103/PhysRevLett.105.053601 ADSCrossRefGoogle Scholar
  13. 13.
    M. Koschorreck, M. Napolitano, B. Dubost, M.W. Mitchell, Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010). doi: 10.1103/PhysRevLett.104.093602 ADSCrossRefGoogle Scholar
  14. 14.
    M. Koschorreck, M. Napolitano, B. Dubost, M.W. Mitchell, Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling. Phys. Rev. Lett. 105, 093602 (2010). doi: 10.1103/PhysRevLett.105.093602 ADSCrossRefGoogle Scholar
  15. 15.
    R.J. Sewell et al., Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012). doi: 10.1103/PhysRevLett.109.253605 ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Sewell et al., Ultrasensitive atomic spin measurements with a nonlinear interferometer. Phys. Rev. X 4, 021045 (2014). doi: 10.1103/PhysRevX.4.021045 Google Scholar
  17. 17.
    A. Predojević, Z. Zhai, J.M. Caballero, M.W. Mitchell, Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator. Phys. Rev. A 78, 063820 (2008). doi: 10.1103/PhysRevA.78.063820 ADSCrossRefGoogle Scholar
  18. 18.
    F. Wolfgramm et al., Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008). doi: 10.1364/OE.16.018145 ADSCrossRefGoogle Scholar
  19. 19.
    F. Wolfgramm, A. Cerè, M.W. Mitchell, Noon states from cavity-enhanced down-conversion: high quality and super-resolution. J. Opt. Soc. Am. B 27, A25–A29 (2010). doi: 10.1364/JOSAB.27.000A25 ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Zielińska, F.A. Beduini, V.G. Lucivero, M.W. Mitchell, Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics. Opt. Express 22, 25307–25317 (2014). doi: 10.1364/OE.22.025307 ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Zielińska, F.A. Beduini, N. Godbout, M.W. Mitchell, Ultranarrow Faraday rotation filter at the Rb D\(_1\) line. Opt. Lett. 37, 524–526 (2012). doi: 10.1364/OL.37.000524 ADSCrossRefGoogle Scholar
  22. 22.
    F.A. Beduini, J.A. Zielińska, V.G. Lucivero, Y.A. de Icaza Astiz, M.W. Mitchell, Interferometric measurement of the biphoton wave function. Phys. Rev. Lett. 113, 183602 (2014). doi: 10.1103/PhysRevLett.113.183602 ADSCrossRefGoogle Scholar
  23. 23.
    F. Wolfgramm, C. Vitelli, F.A. Beduini, N. Godbout, M.W. Mitchell, Entanglement-enhanced probing of a delicate material system. Nat. Photon. 7, 28–32 (2013). doi: 10.1038/nphoton.2012.300 ADSCrossRefGoogle Scholar
  24. 24.
    Z.Y. Ou, Y.J. Lu, Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 8, 2556–2559 (1999). doi: 10.1103/PhysRevLett.83.2556 ADSCrossRefGoogle Scholar
  25. 25.
    Y. Öhman, On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation. Stockholms Obs. Ann. 19, 9–11 (1956)Google Scholar
  26. 26.
    J.S. Neergaard-Nielsen, B.M. Nielsen, H. Takahashi, A.I. Vistnes, E.S. Polzik, High purity bright single photon source. Opt. Express 15, 7940–7949 (2007). doi: 10.1364/OE.15.007940 ADSCrossRefGoogle Scholar
  27. 27.
    A. Haase, N. Piro, J. Eschner, M.W. Mitchell, Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. Opt. Lett. 34, 55–57 (2009). doi: 10.1364/OL.34.000055
  28. 28.
    P. Palittapongarnpim, A. MacRae, A.I. Lvovsky, Note: a monolithic filter cavity for experiments in quantum optics. Rev.Sci. Instrum. 83, 066101 (2012). doi: 10.1063/1.4726458 ADSCrossRefGoogle Scholar
  29. 29.
    J.A. Zielińska, M.W. Mitchell, Theory of high gain cavity-enhanced spontaneous parametric down-conversion (2014)Google Scholar
  30. 30.
    X. Yang, S. Li, C. Zhang, H. Wang, Enhanced cross-kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system. J. Opt. Soc. Am. B 26, 1423–1424 (2009). doi: 10.1364/JOSAB.26.001423 ADSCrossRefGoogle Scholar
  31. 31.
    R.M. Camacho, P.K. Vudyasetu, J.C. Howell, Four-wave-mixing stopped light in hot atomic rubidium vapour. Nat. Photon. 3, 103–106 (2009). doi: 10.1038/nphoton.2008.290 ADSCrossRefGoogle Scholar
  32. 32.
    V.I. Yudin et al., Vector magnetometry based on electromagnetically induced transparency in linearly polarized light. Phys. Rev. A 82, 033807 (2010). doi: 10.1103/PhysRevA.82.033807 ADSCrossRefGoogle Scholar
  33. 33.
    W.F. Krupke, R.J. Beach, V.K. Kanz, S.A. Payne, Resonance transition 795-nm rubidium laser. Opt. Lett. 28, 2336–2338 (2003). doi: 10.1364/OL.28.002336 ADSCrossRefGoogle Scholar
  34. 34.
    J. Ries, B. Brezger, A.I. Lvovsky, Experimental vacuum squeezing in rubidium vapor via self-rotation. Phys. Rev. A 68, 025801 (2003). doi: 10.1103/PhysRevA.68.025801 ADSCrossRefGoogle Scholar
  35. 35.
    I.H. Agha, G. Messin, P. Grangier, Generation of pulsed and continuous-wave squeezed light with \(^{87}\)Rb vapor. Opt. Express 18, 4198–4205 (2010). doi: 10.1364/OE.18.004198 ADSCrossRefGoogle Scholar
  36. 36.
    M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam, B.C. Buchler, Unconditional room-temperature quantum memory. Nat. Phys. 7, 794–798 (2011). doi: 10.1038/nphys2021 CrossRefGoogle Scholar
  37. 37.
    A. Cere et al., Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor. Opt. Lett. 34, 1012–1014 (2009). doi: 10.1364/OL.34.001012 ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    F. Wolfgramm, Y.A. de Icaza Astiz, F.A. Beduini, A. Cerè, M.W. Mitchell, Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011). doi: 10.1103/PhysRevLett.106.053602 ADSCrossRefGoogle Scholar
  39. 39.
    I. Gerhardt, Software—sodium data. Available at http://gerhardt.ch/sodium.php
  40. 40.
    W. Kiefer, R. Low, J. Wrachtrup, I. Gerhardt, Na-Faraday rotation filtering: the optimal point. Sci. Rep. 4, 6552 (2014). doi: 10.1038/srep06552 ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Zentile et al., Elecsus: A program to calculate the electric susceptibility of an atomic ensemble. Comput. Phys. Commun. 189, 162–174 (2015). doi: 10.1016/j.cpc.2014.11.023 ADSCrossRefGoogle Scholar
  42. 42.
    J. Menders, K. Benson, S.H. Bloom, C.S. Liu, E. Korevaar, Ultranarrow line filtering using a cs faraday filter at 852 nm. Opt. Lett. 16, 846–848 (1991). doi: 10.1364/OL.16.000846 ADSCrossRefGoogle Scholar
  43. 43.
    B. Yin, T. Shay, Faraday anomalous dispersion optical filter for the Cs 455 nm transition. Photon. Technol. Lett. IEEE 4, 488–490 (1992). doi: 10.1109/68.136496 ADSCrossRefGoogle Scholar
  44. 44.
    Y. Wang, Cs faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm. Opt. Express 20, 25817–25825 (2012). doi: 10.1364/OE.20.025817 ADSCrossRefGoogle Scholar
  45. 45.
    B. Yin, L.S. Alvarez, T.M. Shay, The rb 780-nanometer faraday anomalous dispersion optical filter: Theory and experiment (Technical report, Jet Propulsion Laboratory, 1994)Google Scholar
  46. 46.
    D.J. Dick, T.M. Shay, Ultrahigh-noise rejection optical filter. Opt. Lett. 16, 867–869 (1991). doi: 10.1364/OL.16.000867 ADSCrossRefGoogle Scholar
  47. 47.
    L. Ling, G. Bi, Isotope \(^{87}\)Rb Faraday anomalous dispersion optical filter at 420 nm. Opt. Lett. 39, 3324–3327 (2014). doi: 10.1364/OL.39.003324 ADSCrossRefGoogle Scholar
  48. 48.
    B. Yin, T. Shay, A potassium Faraday anomalous dispersion optical filter. Opt. Commun. 94, 30–32 (1992). doi: 10.1016/0030-4018(92)90400-L ADSCrossRefGoogle Scholar
  49. 49.
    H. Chen, C.Y. She, P. Searcy, E. Korevaar, Sodium-vapor dispersive faraday filter. Opt. Lett. 18, 1019–1021 (1993). doi: 10.1364/OL.18.001019 ADSCrossRefGoogle Scholar
  50. 50.
    Y.C. Chan, J.A. Gelbwachs, Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm. IEEE J. Quantum Electron. 29, 2379–2384 (1993). doi: 10.1109/3.245569 ADSCrossRefGoogle Scholar
  51. 51.
    C.E. Kuklewicz, F.N.C. Wong, J.H. Shapiro, Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 97, 223601 (2006). doi: 10.1103/PhysRevLett.97.223601 ADSCrossRefGoogle Scholar
  52. 52.
    O. Kuzucu, F.N.C. Wong, Pulsed sagnac source of narrow-band polarization-entangled photons. Phys. Rev. A 77, 032314 (2008). doi: 10.1103/PhysRevA.77.032314 ADSCrossRefGoogle Scholar
  53. 53.
    K.A. O’Donnell, A.B. U’Ren, Time-resolved up-conversion of entangled photon pairs. Phys. Rev. Lett. 103, 123602 (2009). doi: 10.1103/PhysRevLett.103.123602 ADSCrossRefGoogle Scholar
  54. 54.
    L. Pezzè, A. Smerzi, Quantum theory of phase estimation, in Proceedings of the International School of Physics “Enrico Fermi”, ed. by G.M. Tino, M.A. Kasevich (IOS Press, Amsterdam, 2014), pp. 691–741Google Scholar
  55. 55.
    U. Dorner et al., Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009). doi: 10.1103/PhysRevLett.102.040403 ADSCrossRefGoogle Scholar
  56. 56.
    B.M. Escher, R.L. de Matos Filho, L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011). doi: 10.1038/nphys1958 CrossRefGoogle Scholar
  57. 57.
    G.D. Boyd, D.A. Kleinman, Parametric interaction of focused gaussian light beams. J. Appl. Phys. 39, 3597–3639 (1968). doi: 10.1063/1.1656831 ADSCrossRefGoogle Scholar
  58. 58.
    R.L. Targat, J.-J. Zondy, P. Lemonde, 75%-efficiency blue generation from an intracavity PPKTP frequency doubler. Opt. Commun. 247, 471–481 (2005). doi: 10.1016/j.optcom.2004.11.081 ADSCrossRefGoogle Scholar
  59. 59.
    B. Boulanger, M.M. Fejer, R. Blachman, P.F. Bordui, Study of KTiOPO\(_4\) graytracking at 1064, 532, and 355 nm. Appl. Phys. Lett. 65, 2401–2403 (1994). doi: 10.1063/1.112688 ADSCrossRefGoogle Scholar
  60. 60.
    R.B.A. Adamson, L.K. Shalm, M.W. Mitchell, A.M. Steinberg, Multiparticle state tomography: Hidden differences. Phys. Rev. Lett. 98, 043601 (2007). doi: 10.1103/PhysRevLett.98.04360 ADSCrossRefGoogle Scholar
  61. 61.
    B. Julsgaard, J. Sherson, J.I. Cirac, J. Fiurasek, E.S. Polzik, Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004). doi: 10.1038/nature03064 ADSCrossRefGoogle Scholar
  62. 62.
    R.J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, M.W. Mitchell, Certified quantum non-demolition measurement of a macroscopic material system. Nat. Photon. 7, 517–520 (2013). doi: 10.1038/nphoton.2013.100 ADSCrossRefGoogle Scholar
  63. 63.
    L.B. Madsen, K. Mølmer, Spin squeezing and precision probing with light and samples of atoms in the gaussian description. Phys. Rev. A 70, 052324 (2004). doi: 10.1103/PhysRevA.70.052324 ADSCrossRefGoogle Scholar
  64. 64.
    M. Napolitano et al., Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011). doi: 10.1038/nature09778 ADSCrossRefGoogle Scholar
  65. 65.
    D.A. Steck, Rubidium 85 D line data, revision 2.1.4 (2010), http://steck.us/alkalidata. Accessed 23 Dec 2010
  66. 66.
    D.A. Steck, Rubidium 87 D line data, revision 2.1.4 (2010), http://steck.us/alkalidata. Accessed 23 Dec 2010
  67. 67.
    I. Afek, O. Ambar, Y. Silberberg, Classical bound for mach-zehnder superresolution. Phys. Rev. Lett. 104, 123602 (2010). doi: 10.1103/PhysRevLett.104.123602 ADSCrossRefGoogle Scholar
  68. 68.
    N. Thomas-Peter et al., Real-world quantum sensors: evaluating resources for precision measurement. Phys. Rev. Lett. 107, 113603 (2011). doi: 10.1103/PhysRevLett.107.113603 ADSCrossRefGoogle Scholar
  69. 69.
    Y.J. Lu, Z.Y. Ou, Optical parametric oscillator far below threshold: experiment versus theory. Phys. Rev. A 62, 033804 (2000). doi: 10.1103/PhysRevA.62.033804 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ICFO-Institut de Ciencies FotoniquesCastelldefelsSpain
  2. 2.ICREA-Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations