A Highly Efficient Single Photon-Single Quantum Dot Interface

  • Loic Lanco
  • Pascale Senellart
Part of the Nano-Optics and Nanophotonics book series (NON)


Semiconductor quantum dots are a promising system to build a solid state quantum network. A critical step in this area is to build an efficient interface between a stationary quantum bit and a flying one. In this chapter, we show how cavity quantum electrodynamics allows us to efficiently interface a single quantum dot with a propagating electromagnetic field. Beyond the well known Purcell factor, we discuss the various parameters that need to be optimized to build such an interface. We then review our recent progresses in terms of fabrication of bright sources of indistinguishable single photons, where a record brightness of 79 % is obtained as well as a high degree of indistinguishability of the emitted photons. Symmetrically, optical nonlinearities at the very few photon level are demonstrated, by sending few photon pulses at a quantum dot-cavity device operating in the strong coupling regime. Perspectives and future challenges are briefly discussed.


Single Photon Cavity Mode CNOT Gate Single Photon Source Target Qubit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge their coworkers who have made all these results possible: Aristide Lemaitre, Isabelle Sagnes, Paul Voisin, Olivier Krebs, Adrien Dousse, Olivier Gazzano, Jan Suffczynski, Steffen Michaelis de Vasconcellos, Anna Nowak, Simone Luca Portalupi, Valérian Giesz, Niccolo Somaschi, Chirstophe Arnold, Vivien Loo, Justin Demory, Marcelo de Almeida, Andrew White and Alexia Auffeves. This work was partially supported by the French ANR DELIGHT, ANR MIND, ANR CAFE, ANR QDOM, the ERC starting grant 277885 QD-CQED, the CHISTERA project SSQN, the French Labex NANOSACLAY, and the RENATECH network.


  1. 1.
    J.Y. Marzin, J.M. Gérard, A. Izraël, D. Barrier, G. Bastard, Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).
  2. 2.
    M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, Hidden symmetries in the energy levels of excitonic /‘artificial atoms/’. Nature 405, 923–926 (2000).
  3. 3.
    P. Michler et al., A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).
  4. 4.
    N. Akopian et al., Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 8, 130501 (2006).
  5. 5.
    R.J. Young et al., Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006).
  6. 6.
    S. Strauf et al., High-frequency single-photon source with polarization control. Nat. Photonics 1, 704–708 (2007).
  7. 7.
    D.J.P. Ellis et al., Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz. New J. Phys. 10, 043035 (2008).
  8. 8.
    C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
  9. 9.
    S. Ates et al., Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).
  10. 10.
    R.M. Stevenson et al., Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).
  11. 11.
    M. Muller, S. Bounouar, K.D. Jons, M. Glassl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014).
  12. 12.
    Y.-M. He et al., On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nano. 8, 213–217 (2013).
  13. 13.
    O. Gazzano et al., Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).
  14. 14.
    V. Loo et al., Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device. Phys. Rev. Lett. 109, 166806 (2012).
  15. 15.
    R. Bose, D. Sridharan, H. Kim, G.S. Solomon, E. Waks, Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012).
  16. 16.
    A. Reinhard et al., Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2011).
  17. 17.
    H. Kim, R. Bose, T.C. Shen, G.S. Solomon, E. Waks, A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 7, 373–377 (2013).
  18. 18.
    S. Laurent, et al., Electrical control of hole spin relaxation in charge tunable InAs/GaAs quantum dots. Phys. Rev. Lett. 94, 147401 (2005).
  19. 19.
    A. Greilich et al., Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).
  20. 20.
    X. Xu et al., Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008).
  21. 21.
    A.J. Ramsay et al., Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).
  22. 22.
    B.D. Gerardot et al., Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).
  23. 23.
    K. De Greve et al., Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011).
  24. 24.
    D. Brunner et al., A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).
  25. 25.
    D. Press et al., Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010).
  26. 26.
    D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).
  27. 27.
    W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).
  28. 28.
    K. De Greve et al., Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).
  29. 29.
    J. Claudon et al., A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010).
  30. 30.
    M.E. Reimer et al., Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 1266 (2012).
  31. 31.
    M. Munsch et al., Dielectric gaas antenna ensuring an efficient broadband coupling between an inas quantum dot and a gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).
  32. 32.
    A. Laucht et al., A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012).
  33. 33.
    I. Yeo et al., Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl. Phys. Lett. 99, 233106 (2011).
  34. 34.
    S. Varoutsis et al., Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).
  35. 35.
    A. Dousse et al., Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).
  36. 36.
    A. Dousse et al., A quantum dot based bright source of entangled photon pairs operating at 53 k. Appl. Phys. Lett. 97, 081104 (2010).
  37. 37.
    J.M. Gérard et al., Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).
  38. 38.
    T. Yoshie et al., Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Reithmaier et al., Strong coupling in a single quantum dot?semiconductor microcavity system. Nature 432, 197–200 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    E. Peter et al., Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).
  41. 41.
    J.-M. Gerard, B. Gayral, Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089 (1999).
  42. 42.
    A. Dousse et al., Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett 101, 267404 (2008).
  43. 43.
    L.C. Andreani, G. Panzarini, J.-M. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999).
  44. 44.
    A. Auffèves-Garnier, C. Simon, J.-M. Gérard, J.-P. Poizat, Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the purcell regime. Phys. Rev. A 75, 053823 (2007).
  45. 45.
    A. Badolato et al., Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).
  46. 46.
    P. Gallo et al., Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett. 92, 263101 (2008).
  47. 47.
    D. Dalacu et al., Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Phys. Rev. B 82, 033301 (2010).
  48. 48.
    Q.A. Turchette, R.J. Thompson, H.J. Kimble, One-dimensional atoms. Appl. Phys. B 60, S1–S10 (1995).
  49. 49.
    V. Loo et al., Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-q micropillar. Appl. Phys. Lett. 97, 241110 (2010).
  50. 50.
    C. Arnold et al., Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200,000. Appl. Phys. Lett. 100, 111111 (2012).
  51. 51.
    X.-C. Yao et al., Observation of eight-photon entanglement. Nat. Photonics 6, 225–228 (2012).
  52. 52.
    J. Bleuse et al., Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).
  53. 53.
    O. Gazzano et al., Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett. 107, 247402 (2011).
  54. 54.
    M. Lermer et al., Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. 108, 057402 (2012).
  55. 55.
    E. Peter et al., Fast radiative quantum dots: from single to multiple photon emission. Appl. Phys. Lett. 90, 223118 (2007).
  56. 56.
    M. Kaniber et al., Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303 (2008).
  57. 57.
    J. Suffczyński et al., Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys. Rev. Lett. 103, 027401 (2009).
  58. 58.
    M. Winger et al., Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).
  59. 59.
    S. Strauf et al., Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).
  60. 60.
    V. Giesz et al., Influence of the purcell effect on the purity of bright single photon sources. Appl. Phys. Lett. 103, 33113 (2013).
  61. 61.
    L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).
  62. 62.
    I. Favero et al., Acoustic phonon sidebands in the emission line of single inas/gaas quantum dots. Phys. Rev. B 68, 233301 (2003).
  63. 63.
    E. Peter et al., Phonon sidebands in exciton and biexciton emission from single gaas quantum dots. Phys. Rev. B 69, 041307 (2004).
  64. 64.
    A. Berthelot et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2, 759–764 (2006).
  65. 65.
    J. Hours, P. Senellart, E. Peter, A. Cavanna, J. Bloch, Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306 (2005).
  66. 66.
    A.J. Bennett et al., Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 6, 947–950 (2010).
  67. 67.
    R.B. Patel, A.J. Bennett, J. Anthony, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010).
  68. 68.
    T. Heindel et al., Electrically driven quantum dot-micropillar single photon source with 34. Appl. Phys. Lett. 96, 011107 (2010).
  69. 69.
    A.K. Nowak et al., Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).
  70. 70.
    O. Gazzano et al., Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys. Rev. Lett. 110, 250501 (2013).
  71. 71.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2010).
  72. 72.
    A.G. White et al., Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007).
  73. 73.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001).
  74. 74.
    K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).
  75. 75.
    D.E. Chang, A.S. Sorensen, E.A. Demler, M.D.A. Lukin, Single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007).
  76. 76.
    D. Englund et al., Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).
  77. 77.
    D. Englund et al., Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108, 093604 (2012).
  78. 78.
    T. Volz et al., Ultrafast all-optical switching by single photons. Nat. Photonics 6, 607–611 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    K. Srinivasan, O. Painter, Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, 023814 (2007).
  80. 80.
    K. Srinivasan, C.P. Michael, R. Perahia, O. Painter, Investigations of a coherently driven semiconductor optical cavity qed system. Phys. Rev. A 78, 033839 (2008).
  81. 81.
    S. Rosenblum, S. Parkins, B. Dayan, Photon routing in cavity qed: beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011).
  82. 82.
    C. Arnold et al., Cavity-enhanced real-time monitoring of single-charge jumps at the microsecond time scale. Phys. Rev. X 4, 021004 (2014).
  83. 83.
    A.V. Kuhlmann et al., Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).
  84. 84.
    E.B. Flagg et al., Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).
  85. 85.
    W. Gao et al., Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4 (2013). doi: 10.1038/ncomms3744;
  86. 86.
    J. Berezovsky et al., Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).
  87. 87.
    M. Atature, J. Dreiser, A. Badolato, A. Imamoglu, Observation of faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007).
  88. 88.
    C.Y. Hu, W.J. Munro, J.G. Rarity, Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008).
  89. 89.
    C. Bonato et al., CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett 104, 160503 (2010).
  90. 90.
    M.N. Leuenberger, Fault-tolerant quantum computing with coded spins using the conditional faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006).
  91. 91.
    D. Valente et al., Frequency cavity pulling induced by a single semiconductor quantum dot. Phys. Rev. B 89, 041302 (2014).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CNRS-LPN Laboratoire de Photonique Et de NanostructuresRoute de NozayMarcoussisFrance
  2. 2.Université Paris DiderotParis Cedex 13France
  3. 3.Physics DepartmentEcole Polytechnique-RD128Palaiseau CedexFrance

Personalised recommendations