Advertisement

A Highly Efficient Single Photon-Single Quantum Dot Interface

  • Loic Lanco
  • Pascale Senellart
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

Semiconductor quantum dots are a promising system to build a solid state quantum network. A critical step in this area is to build an efficient interface between a stationary quantum bit and a flying one. In this chapter, we show how cavity quantum electrodynamics allows us to efficiently interface a single quantum dot with a propagating electromagnetic field. Beyond the well known Purcell factor, we discuss the various parameters that need to be optimized to build such an interface. We then review our recent progresses in terms of fabrication of bright sources of indistinguishable single photons, where a record brightness of 79 % is obtained as well as a high degree of indistinguishability of the emitted photons. Symmetrically, optical nonlinearities at the very few photon level are demonstrated, by sending few photon pulses at a quantum dot-cavity device operating in the strong coupling regime. Perspectives and future challenges are briefly discussed.

Keywords

Single Photon Cavity Mode CNOT Gate Single Photon Source Target Qubit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge their coworkers who have made all these results possible: Aristide Lemaitre, Isabelle Sagnes, Paul Voisin, Olivier Krebs, Adrien Dousse, Olivier Gazzano, Jan Suffczynski, Steffen Michaelis de Vasconcellos, Anna Nowak, Simone Luca Portalupi, Valérian Giesz, Niccolo Somaschi, Chirstophe Arnold, Vivien Loo, Justin Demory, Marcelo de Almeida, Andrew White and Alexia Auffeves. This work was partially supported by the French ANR DELIGHT, ANR MIND, ANR CAFE, ANR QDOM, the ERC starting grant 277885 QD-CQED, the CHISTERA project SSQN, the French Labex NANOSACLAY, and the RENATECH network.

References

  1. 1.
    J.Y. Marzin, J.M. Gérard, A. Izraël, D. Barrier, G. Bastard, Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994). http://dx.doi.org/10.1103/PhysRevLett.73.716
  2. 2.
    M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, Hidden symmetries in the energy levels of excitonic /‘artificial atoms/’. Nature 405, 923–926 (2000). http://dx.doi.org/10.1038/35016020
  3. 3.
    P. Michler et al., A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000). http://dx.doi.org/10.1126/science.290.5500.2282
  4. 4.
    N. Akopian et al., Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 8, 130501 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.130501
  5. 5.
    R.J. Young et al., Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006). http://dx.doi.org/10.1088/1367-2630/8/2/029
  6. 6.
    S. Strauf et al., High-frequency single-photon source with polarization control. Nat. Photonics 1, 704–708 (2007). http://dx.doi.org/10.1038/nphoton.2007.227
  7. 7.
    D.J.P. Ellis et al., Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz. New J. Phys. 10, 043035 (2008). http://stacks.iop.org/1367-2630/10/i=4/a=043035
  8. 8.
    C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002). http://dx.doi.org/10.1038/nature01086
  9. 9.
    S. Ates et al., Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.167402
  10. 10.
    R.M. Stevenson et al., Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.040503
  11. 11.
    M. Muller, S. Bounouar, K.D. Jons, M. Glassl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014). http://dx.doi.org/10.1038/nphoton.2013.377
  12. 12.
    Y.-M. He et al., On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nano. 8, 213–217 (2013). http://dx.doi.org/10.1038/nnano.2012.262
  13. 13.
    O. Gazzano et al., Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013). http://dx.doi.org/10.1038/ncomms2434
  14. 14.
    V. Loo et al., Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device. Phys. Rev. Lett. 109, 166806 (2012). http://dx.doi.org/10.1103/PhysRevLett.109.166806
  15. 15.
    R. Bose, D. Sridharan, H. Kim, G.S. Solomon, E. Waks, Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.227402
  16. 16.
    A. Reinhard et al., Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2011). http://dx.doi.org/10.1038/nphoton.2011.321
  17. 17.
    H. Kim, R. Bose, T.C. Shen, G.S. Solomon, E. Waks, A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 7, 373–377 (2013). http://dx.doi.org/10.1038/nphoton.2013.48
  18. 18.
    S. Laurent, et al., Electrical control of hole spin relaxation in charge tunable InAs/GaAs quantum dots. Phys. Rev. Lett. 94, 147401 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.147401
  19. 19.
    A. Greilich et al., Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006). http://dx.doi.org/10.1126/science.1128215
  20. 20.
    X. Xu et al., Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008). http://dx.doi.org/10.1038/nphys1054
  21. 21.
    A.J. Ramsay et al., Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.197401
  22. 22.
    B.D. Gerardot et al., Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008). http://dx.doi.org/10.1038/nature06472
  23. 23.
    K. De Greve et al., Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011). http://dx.doi.org/10.1038/nphys2078
  24. 24.
    D. Brunner et al., A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009). http://dx.doi.org/10.1126/science.1173684
  25. 25.
    D. Press et al., Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010). http://dx.doi.org/10.1038/nphoton.2010.83
  26. 26.
    D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008). http://dx.doi.org/10.1038/nature07530
  27. 27.
    W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012). http://dx.doi.org/10.1038/nature11573
  28. 28.
    K. De Greve et al., Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012). http://dx.doi.org/10.1038/nature11577
  29. 29.
    J. Claudon et al., A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010). http://dx.doi.org/10.1038/nphoton.2009.287
  30. 30.
    M.E. Reimer et al., Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 1266 (2012). http://dx.doi.org/10.1038/ncomms1746
  31. 31.
    M. Munsch et al., Dielectric gaas antenna ensuring an efficient broadband coupling between an inas quantum dot and a gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.177402
  32. 32.
    A. Laucht et al., A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012). http://dx.doi.org/10.1103/PhysRevX.2.011014
  33. 33.
    I. Yeo et al., Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl. Phys. Lett. 99, 233106 (2011). http://dx.doi.org/dx.doi.org/10.1063/1.3665629
  34. 34.
    S. Varoutsis et al., Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005). http://dx.doi.org/10.1103/PhysRevB.72.041303
  35. 35.
    A. Dousse et al., Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010). http://dx.doi.org/10.1038/nature09148
  36. 36.
    A. Dousse et al., A quantum dot based bright source of entangled photon pairs operating at 53 k. Appl. Phys. Lett. 97, 081104 (2010). http://dx.doi.org/dx.doi.org/10.1063/1.3475487
  37. 37.
    J.M. Gérard et al., Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1110
  38. 38.
    T. Yoshie et al., Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Reithmaier et al., Strong coupling in a single quantum dot?semiconductor microcavity system. Nature 432, 197–200 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    E. Peter et al., Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.067401
  41. 41.
    J.-M. Gerard, B. Gayral, Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089 (1999). http://www.jlt.osa.org/abstract.cfm?URI=jlt-17-11-2089
  42. 42.
    A. Dousse et al., Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett 101, 267404 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.267404
  43. 43.
    L.C. Andreani, G. Panzarini, J.-M. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999). http://dx.doi.org/10.1103/PhysRevB.60.13276
  44. 44.
    A. Auffèves-Garnier, C. Simon, J.-M. Gérard, J.-P. Poizat, Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the purcell regime. Phys. Rev. A 75, 053823 (2007). http://dx.doi.org/10.1103/PhysRevA.75.053823
  45. 45.
    A. Badolato et al., Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005). http://dx.doi.org/10.1126/science.1109815
  46. 46.
    P. Gallo et al., Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett. 92, 263101 (2008). http://dx.doi.org/dx.doi.org/10.1063/1.2952278
  47. 47.
    D. Dalacu et al., Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Phys. Rev. B 82, 033301 (2010). http://dx.doi.org/10.1103/PhysRevB.82.033301
  48. 48.
    Q.A. Turchette, R.J. Thompson, H.J. Kimble, One-dimensional atoms. Appl. Phys. B 60, S1–S10 (1995). http://www.springerlink.com/content/t007u7mx5663042v/
  49. 49.
    V. Loo et al., Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-q micropillar. Appl. Phys. Lett. 97, 241110 (2010). http://dx.doi.org/10.1063/1.3527930
  50. 50.
    C. Arnold et al., Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200,000. Appl. Phys. Lett. 100, 111111 (2012). http://dx.doi.org/10.1063/1.3694026
  51. 51.
    X.-C. Yao et al., Observation of eight-photon entanglement. Nat. Photonics 6, 225–228 (2012). http://dx.doi.org/10.1038/nphoton.2011.354
  52. 52.
    J. Bleuse et al., Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011). http://dx.doi.org/10.1103/PhysRevLett.106.103601
  53. 53.
    O. Gazzano et al., Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett. 107, 247402 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.247402
  54. 54.
    M. Lermer et al., Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. 108, 057402 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.057402
  55. 55.
    E. Peter et al., Fast radiative quantum dots: from single to multiple photon emission. Appl. Phys. Lett. 90, 223118 (2007). http://dx.doi.org/dx.doi.org/10.1063/1.2744475
  56. 56.
    M. Kaniber et al., Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303 (2008). http://dx.doi.org/10.1103/PhysRevB.77.161303
  57. 57.
    J. Suffczyński et al., Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys. Rev. Lett. 103, 027401 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.027401
  58. 58.
    M. Winger et al., Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.207403
  59. 59.
    S. Strauf et al., Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.127404
  60. 60.
    V. Giesz et al., Influence of the purcell effect on the purity of bright single photon sources. Appl. Phys. Lett. 103, 33113 (2013). http://dx.doi.org/dx.doi.org/10.1063/1.4813902
  61. 61.
    L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001). http://dx.doi.org/10.1103/PhysRevB.63.155307
  62. 62.
    I. Favero et al., Acoustic phonon sidebands in the emission line of single inas/gaas quantum dots. Phys. Rev. B 68, 233301 (2003). http://dx.doi.org/10.1103/PhysRevB.68.233301
  63. 63.
    E. Peter et al., Phonon sidebands in exciton and biexciton emission from single gaas quantum dots. Phys. Rev. B 69, 041307 (2004). http://dx.doi.org/10.1103/PhysRevB.69.041307
  64. 64.
    A. Berthelot et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2, 759–764 (2006). http://dx.doi.org/10.1038/nphys433
  65. 65.
    J. Hours, P. Senellart, E. Peter, A. Cavanna, J. Bloch, Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306 (2005). http://dx.doi.org/10.1103/PhysRevB.71.161306
  66. 66.
    A.J. Bennett et al., Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 6, 947–950 (2010). http://dx.doi.org/10.1038/nphys1780
  67. 67.
    R.B. Patel, A.J. Bennett, J. Anthony, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010). http://dx.doi.org/10.1038/nphoton.2010.161
  68. 68.
    T. Heindel et al., Electrically driven quantum dot-micropillar single photon source with 34. Appl. Phys. Lett. 96, 011107 (2010). http://dx.doi.org/10.1063/1.3284514
  69. 69.
    A.K. Nowak et al., Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014). http://dx.doi.org/10.1038/ncomms4240
  70. 70.
    O. Gazzano et al., Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys. Rev. Lett. 110, 250501 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.250501
  71. 71.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2010). http://dx.doi.org/10.1038/nature02054
  72. 72.
    A.G. White et al., Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007). http://dx.doi.org/10.1364/JOSAB.24.000172
  73. 73.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001). http://dx.doi.org/10.1103/PhysRevA.64.052312
  74. 74.
    K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005). http://dx.doi.org/doi:10.1038/nature03804
  75. 75.
    D.E. Chang, A.S. Sorensen, E.A. Demler, M.D.A. Lukin, Single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007). http://dx.doi.org/10.1038/nphys708
  76. 76.
    D. Englund et al., Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007). http://dx.doi.org/10.1038/nature06234
  77. 77.
    D. Englund et al., Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108, 093604 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.093604
  78. 78.
    T. Volz et al., Ultrafast all-optical switching by single photons. Nat. Photonics 6, 607–611 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    K. Srinivasan, O. Painter, Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, 023814 (2007). http://dx.doi.org/10.1103/PhysRevA.75.023814
  80. 80.
    K. Srinivasan, C.P. Michael, R. Perahia, O. Painter, Investigations of a coherently driven semiconductor optical cavity qed system. Phys. Rev. A 78, 033839 (2008). http://dx.doi.org/10.1103/PhysRevA.78.033839
  81. 81.
    S. Rosenblum, S. Parkins, B. Dayan, Photon routing in cavity qed: beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011). http://dx.doi.org/10.1103/PhysRevA.84.033854
  82. 82.
    C. Arnold et al., Cavity-enhanced real-time monitoring of single-charge jumps at the microsecond time scale. Phys. Rev. X 4, 021004 (2014). http://dx.doi.org/10.1103/PhysRevX.4.021004
  83. 83.
    A.V. Kuhlmann et al., Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013). http://dx.doi.org/10.1038/nphys2688
  84. 84.
    E.B. Flagg et al., Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.137401
  85. 85.
    W. Gao et al., Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4 (2013). doi: 10.1038/ncomms3744; http://dx.doi.org/10.1038/ncomms3744
  86. 86.
    J. Berezovsky et al., Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006). http://dx.doi.org/10.1126/science.1133862
  87. 87.
    M. Atature, J. Dreiser, A. Badolato, A. Imamoglu, Observation of faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007). http://dx.doi.org/10.1038/nphys521
  88. 88.
    C.Y. Hu, W.J. Munro, J.G. Rarity, Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008). http://dx.doi.org/10.1103/PhysRevB.78.125318
  89. 89.
    C. Bonato et al., CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett 104, 160503 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.160503
  90. 90.
    M.N. Leuenberger, Fault-tolerant quantum computing with coded spins using the conditional faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006). http://dx.doi.org/10.1103/PhysRevB.73.075312
  91. 91.
    D. Valente et al., Frequency cavity pulling induced by a single semiconductor quantum dot. Phys. Rev. B 89, 041302 (2014). http://dx.doi.org/10.1103/PhysRevB.89.041302

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CNRS-LPN Laboratoire de Photonique Et de NanostructuresRoute de NozayMarcoussisFrance
  2. 2.Université Paris DiderotParis Cedex 13France
  3. 3.Physics DepartmentEcole Polytechnique-RD128Palaiseau CedexFrance

Personalised recommendations