Skip to main content

Nondeterministic Tree Width of Regular Languages

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9118))

Included in the following conference series:

  • 367 Accesses

Abstract

The tree width of a nondeterministic finite automaton (NFA) counts the maximum number of computations the automaton may have on a given input. Here we consider the tree width of a regular language, which, roughly speaking, measures the amount of nondeterminism that a state-minimal NFA for the language needs. We prove that an infinite tree width is obtained from finite tree width, for most operations on regular languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf. Process. Lett. 43, 185–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78, 198–210 (2012)

    Article  MATH  Google Scholar 

  3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Comput. 142–2, 182–206 (1998)

    Article  Google Scholar 

  4. Câmpeanu, C.: Simplyfying nondeterministic finite cover automata. Electron. Proc. Theoret. Comput. Sci. 151–AFL, 162–173 (2014)

    Article  Google Scholar 

  5. Câmpeanu, C.: Non-deterministic finite cover automata. Sci. Ann. Comput. Sci. 29, 3–28 (2015)

    Article  Google Scholar 

  6. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J. Algebra 13(2), 173–191 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ellul, K.: Descriptional Complexity Measures of Regular Languages. Master’s thesis, University of Waterloo (2004)

    Google Scholar 

  9. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual operations. Faculdade de Ciencias, Universidade do Porto, Technical report DCC-2011-8. www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf To appear in Computer Science Review

  10. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86, 179–194 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11779148_33

    Chapter  Google Scholar 

  12. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite and unary languages. In: Proceedings of LATA, pp. 261–272 (2007)

    Google Scholar 

  13. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172, 202–217 (2002)

    Article  MATH  Google Scholar 

  15. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal NFAs over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22, 1117–1141 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, FOCS, pp. 254–266 (1977)

    Google Scholar 

  18. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16, 975–984 (2005)

    Article  MATH  Google Scholar 

  19. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Comput. Sci. 327, 375–390 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeterminism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 252–265. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Palioudakis, A., Salomaa, K., Akl, S.G.: Unary NFAs with limited nondeterminism. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 443–454. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Automata Lang. Comb. 17(2–4), 245–264 (2012)

    MATH  MathSciNet  Google Scholar 

  23. Palioudakis, A.: State complexity of nondeterministic finite automata with limited nondeterminism. Ph.D. thesis, Queen’s University (2014)

    Google Scholar 

  24. Ravikumar, B., Ibarra, O.H.: Relating the degree of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  26. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings of the 5th Symposium on Theory of Computing, pp. 1–9 (1973)

    Google Scholar 

  27. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezar Câmpeanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Câmpeanu, C., Salomaa, K. (2015). Nondeterministic Tree Width of Regular Languages. In: Shallit, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2015. Lecture Notes in Computer Science(), vol 9118. Springer, Cham. https://doi.org/10.1007/978-3-319-19225-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19225-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19224-6

  • Online ISBN: 978-3-319-19225-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics