Abstract
The tree width of a nondeterministic finite automaton (NFA) counts the maximum number of computations the automaton may have on a given input. Here we consider the tree width of a regular language, which, roughly speaking, measures the amount of nondeterminism that a state-minimal NFA for the language needs. We prove that an infinite tree width is obtained from finite tree width, for most operations on regular languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Birget, J.C.: Intersection and union of regular languages and state complexity. Inf. Process. Lett. 43, 185–190 (1992)
Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78, 198–210 (2012)
Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Comput. 142–2, 182–206 (1998)
Câmpeanu, C.: Simplyfying nondeterministic finite cover automata. Electron. Proc. Theoret. Comput. Sci. 151–AFL, 162–173 (2014)
Câmpeanu, C.: Non-deterministic finite cover automata. Sci. Ann. Comput. Sci. 29, 3–28 (2015)
Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)
Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J. Algebra 13(2), 173–191 (1969)
Ellul, K.: Descriptional Complexity Measures of Regular Languages. Master’s thesis, University of Waterloo (2004)
Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual operations. Faculdade de Ciencias, Universidade do Porto, Technical report DCC-2011-8. www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf To appear in Computer Science Review
Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86, 179–194 (1990)
Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11779148_33
Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite and unary languages. In: Proceedings of LATA, pp. 261–272 (2007)
Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)
Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172, 202–217 (2002)
Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal NFAs over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)
Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22, 1117–1141 (1993)
Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, FOCS, pp. 254–266 (1977)
Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16, 975–984 (2005)
Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Comput. Sci. 327, 375–390 (2004)
Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeterminism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 252–265. Springer, Heidelberg (2012)
Palioudakis, A., Salomaa, K., Akl, S.G.: Unary NFAs with limited nondeterminism. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 443–454. Springer, Heidelberg (2014)
Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Automata Lang. Comb. 17(2–4), 245–264 (2012)
Palioudakis, A.: State complexity of nondeterministic finite automata with limited nondeterminism. Ph.D. thesis, Queen’s University (2014)
Ravikumar, B., Ibarra, O.H.: Relating the degree of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)
Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings of the 5th Symposium on Theory of Computing, pp. 1–9 (1973)
Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Câmpeanu, C., Salomaa, K. (2015). Nondeterministic Tree Width of Regular Languages. In: Shallit, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2015. Lecture Notes in Computer Science(), vol 9118. Springer, Cham. https://doi.org/10.1007/978-3-319-19225-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-19225-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19224-6
Online ISBN: 978-3-319-19225-3
eBook Packages: Computer ScienceComputer Science (R0)