Modeling the EUR/USD Index Using LS-SVM and Performing Variable Selection

  • Luis-Javier Herrera
  • Alberto Guillén
  • Rubén Martínez
  • Carlos García
  • Hector Pomares
  • Oresti Baños
  • Ignacio Rojas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9095)

Abstract

As machine learning becomes more popular in all fields, its use is well known in finance and economics. The growing number of people using models to predict the market’s behaviour can modify the market itself so it is more predictable. In this context, the key element is to find out which variables are used to build the model in a macroeconomic environment. This paper presents an application of kernel methods to predict the EUR/USD relationship performing variable selection. The results show how after applying a proper variable selection, very accurate predictions can be achieved and smaller historical data is needed to train the model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, S., Liu, W., Venkatesh, S.: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn. 40(8), 2154–2162 (2007)MATHCrossRefGoogle Scholar
  2. 2.
    Ettredge, M., Gerdes Jr., J., Karuga, G.G.: Using web-based search data to predict macroeconomic statistics. Commun. ACM 48(11), 87–92 (2005)CrossRefGoogle Scholar
  3. 3.
    François, D., Rossi, F., Wertz, V., Verleysen, M.: Resampling methods for parameter-free and robust feature selection with mutual information. CoRR, abs/0709.3640 (2007)Google Scholar
  4. 4.
    Herrera, L.J., Pomares, H., Rojas, I., Verleysen, M., Guilén, A.: Effective input variable selection for function approximation. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 41–50. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Koller, D., Sahami, M.: Toward optimal feature selection. In: Saitta, L. (ed.) Proceedings of the Thirteenth International Conference on Machine Learning (ICML), pp. 284–292. Morgan Kaufmann Publishers (1996)Google Scholar
  6. 6.
    Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69, 066138 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Martinsen, K., Ravazzolo, F., Wulfsberg, F.: Forecasting macroeconomic variables using disaggregate survey data. International Journal of Forecasting 30(1), 65–77 (2014)CrossRefGoogle Scholar
  8. 8.
    Rossi, F., Lendasse, A., Franois, D., Wertz, V., Verleysen, M.: Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chem. and Int. Lab. Syst. 80, 215–226 (2006)CrossRefGoogle Scholar
  9. 9.
    Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th International Conference on Machine Learning, pp. 515–521. Morgan Kaufmann (1998)Google Scholar
  10. 10.
    Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, J., Vandewalle, B.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Del Mar Perez, M., Val, J., Negueruela, I., Lafuente, V., Herrera, L.J.: Firmness prediction in prunus persica calrico peaches by visible/short-wave near infrared spectroscopy and acoustic measurements using optimised linear and non-linear chemometric models. J. Sci. Food Agric., 15, September 2014Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luis-Javier Herrera
    • 1
  • Alberto Guillén
    • 1
  • Rubén Martínez
    • 2
  • Carlos García
    • 2
  • Hector Pomares
    • 1
  • Oresti Baños
    • 1
  • Ignacio Rojas
    • 1
  1. 1.Department of Computer Architecture and TechnologyUniversidad de GranadaGranadaSpain
  2. 2.CoTrading S. L.BarcelonaSpain

Personalised recommendations