The Reproductive System

  • William MifsudEmail author
  • Liina Kiho


A basic requirement of the perinatal autopsy is to document the fetal sex. When this is discordant with the sex documented by the clinical team, it should be communicated rapidly. Occasionally, a disorder of sex development (DSD) may be present, and this should be studied carefully so that the parents may be adequately counseled. Well-documented DSDs, when properly investigated, may also shed new light on our understanding of human reproductive system development. Reproductive tract anomalies can also be associated with complex malformations involving other organs; occasionally a DSD may be the cause of fetal or neonatal demise, such as in cases of pulmonary hypoplasia secondary to hydrometrocolpos.


Reproductive system Gonads Ductal system External genitalia Male development Sex-determining region of the Y chromosome (SRY) Female development Ambiguous genitalia Disorders of sexual development (DSD) Gonadal dysgenesis Ovotestis Androgen Germ cell neoplasia 


  1. 1.
    De Felici M. Origin, migration, and proliferation of human primordial germ cells. In: Coticchio G, Albertini DF, De Santis L, editors. Oogenesis. London: Springer; 2013. p. 19–38.Google Scholar
  2. 2.
    Val P, Martinez-Barbera J-P, Swain A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development. 2007;134:2349–58.PubMedGoogle Scholar
  3. 3.
    Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet. 2004;5:509–21.PubMedGoogle Scholar
  4. 4.
    Hatano O, Takakusu A, Nomura M, Morohashi K. Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells. 1996;1:663–71.PubMedGoogle Scholar
  5. 5.
    Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development. 2003;130:3663–70.PubMedGoogle Scholar
  6. 6.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.PubMedGoogle Scholar
  7. 7.
    Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77:481–90.PubMedGoogle Scholar
  8. 8.
    Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397:405–9.PubMedGoogle Scholar
  9. 9.
    Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, et al. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990;348:448–50.PubMedGoogle Scholar
  10. 10.
    Jäger RJ, Anvret M, Hall K, Scherer G. A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature. 1990;348:452–4.PubMedGoogle Scholar
  11. 11.
    Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature. 1990;348:450–2.PubMedGoogle Scholar
  12. 12.
    Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346:245–50.PubMedGoogle Scholar
  13. 13.
    Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–4.PubMedGoogle Scholar
  14. 14.
    Hanley N, Hagan D, Clement-Jones M, Ball S, Strachan T, Salas-Cortés L, et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.PubMedGoogle Scholar
  15. 15.
    Hossain A, Saunders GF. The human sex-determining gene SRY is a direct target of WT1. J Biol Chem. 2001;276:16817–23.PubMedGoogle Scholar
  16. 16.
    Buaas FW, Val P, Swain A. The transcription co-factor CITED2 functions during sex determination and early gonad development. Hum Mol Genet. 2009;18:2989–3001.PubMedGoogle Scholar
  17. 17.
    Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development. 2002;129:4627–34.PubMedGoogle Scholar
  18. 18.
    Miyamoto Y, Taniguchi H, Hamel F, Silversides DW, Viger RS. A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol. 2008;9:44.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;453:930–4.PubMedGoogle Scholar
  20. 20.
    Vidal VP, Chaboissier MC, de Rooij DG, Schedl A. Sox9 induces testis development in XX transgenic mice. Nat Genet. 2001;28:216–7.PubMedGoogle Scholar
  21. 21.
    Qin Y, Bishop CE. Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Hum Mol Genet. 2005;14:1221–9.PubMedGoogle Scholar
  22. 22.
    Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011;476:101–4.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, et al. Retinoid signaling determines germ cell fate in mice. Science. 2006;312:596–600.PubMedGoogle Scholar
  24. 24.
    Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A. 2006;103:2474–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    McLaren A. Germ cells and germ cell sex. Philos Trans R Soc Lond B Biol Sci. 1995;350:229–33.PubMedGoogle Scholar
  26. 26.
    Childs AJ, Cowan G, Kinnell HL, Anderson RA, Saunders PTK. Retinoic acid signalling and the control of meiotic entry in the human fetal gonad. PLoS One. 2011;6:e20249.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ohta K, Yamamoto M, Lin Y, Hogg N, Akiyama H, Behringer RR, et al. Male differentiation of germ cells induced by embryonic age-specific sertoli cells in mice. Biol Reprod. 2012;86:112.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Josso N, Lamarre I, Picard JY, Berta P, Davies N, Morichon N, et al. Anti-müllerian hormone in early human development. Early Hum Dev. 1993;33:91–9.PubMedGoogle Scholar
  29. 29.
    Rajpert-De Meyts E, Jørgensen N, Graem N, Müller J, Cate RL, Skakkebaek NE. Expression of anti-müllerian hormone during normal and pathological gonadal development: association with differentiation of sertoli and granulosa cells. J Clin Endocrinol Metab. 1999;84:3836–44.PubMedGoogle Scholar
  30. 30.
    Tremblay JJ, Viger RS. A mutated form of steroidogenic factor 1 (SF-1 G35E) that causes sex reversal in humans fails to synergize with transcription factor GATA-4. J Biol Chem. 2003;278:42637–42.PubMedGoogle Scholar
  31. 31.
    Orvis GD, Jamin SP, Kwan KM, Mishina Y, Kaartinen VM, Huang S, et al. Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. Biol Reprod. 2008;78:994–1001.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Arboleda VA, Sandberg DE, Vilain E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat Rev Endocrinol. 2014;10:603–15.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol. 1996;6:298–304.PubMedGoogle Scholar
  34. 34.
    Yao HH, Whoriskey W, Capel B. Desert hedgehog/patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev. 2002;16:1433–40.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Barsoum I, Yao HHC. Redundant and differential roles of transcription factors Gli1 and Gli2 in the development of mouse fetal Leydig cells. Biol Reprod. 2011;84:894–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Brennan J, Tilmann C, Capel B. PDGFR-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 2003;17:800–10.Google Scholar
  37. 37.
    Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002;32:359–69.PubMedGoogle Scholar
  38. 38.
    Miyabayashi K, Katoh-Fukui Y, Ogawa H, Baba T, Shima Y, Sugiyama N, et al. Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells. PLoS One. 2013;8:e68050.PubMedPubMedCentralGoogle Scholar
  39. 39.
    O’Shaughnessy PJ, Baker PJ, Johnston H. The foetal Leydig cell – differentiation, function and regulation. Int J Androl. 2006;29:90–5.PubMedGoogle Scholar
  40. 40.
    Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet. 2008;17:2949–55.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ludbrook LM, Bernard P, Bagheri-Fam S, Ryan J, Sekido R, Wilhelm D, et al. Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology. 2012;153:1948–58.PubMedGoogle Scholar
  42. 42.
    Jordan BK, Mohammed M, Ching ST, Délot E, Chen XN, Dewing P, et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet. 2001;68:1102–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Vilain E, Guo W, Zhang YH, McCabe ER. DAX1 gene expression upregulated by steroidogenic factor 1 in an adrenocortical carcinoma cell line. Biochem Mol Med. 1997;61:1–8.PubMedGoogle Scholar
  44. 44.
    Kawabe K, Shikayama T, Tsuboi H, Oka S, Oba K, Yanase T, et al. Dax-1 as one of the target genes of Ad4BP/SF-1. Mol Endocrinol. 1999;13:1267–84.PubMedGoogle Scholar
  45. 45.
    Hoyle C, Narvaez V, Alldus G, Lovell-Badge R, Swain A. Dax1 expression is dependent on steroidogenic factor 1 in the developing gonad. Mol Endocrinol. 2002;16:747–56.PubMedGoogle Scholar
  46. 46.
    Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139:1130–42.PubMedGoogle Scholar
  47. 47.
    Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science. 1999;286:2328–31.PubMedGoogle Scholar
  48. 48.
    Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development. 2000;127:4277–91.PubMedGoogle Scholar
  49. 49.
    Bendsen E, Byskov A, Andersen CY, Westergaard L. Number of germ cells and somatic cells in human fetal ovaries during the first weeks after sex differentiation. Hum Reprod. 2006;21:30–5.PubMedGoogle Scholar
  50. 50.
    Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet. 2010;87:898–904.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Loke J, Pearlman A, Radi O, Zuffardi O, Giussani U, Pallotta R, et al. Mutations in MAP3K1 tilt the balance from SOX9/FGF9 to WNT/β-catenin signaling. Hum Mol Genet. 2014;23:1073–83.PubMedGoogle Scholar
  52. 52.
    Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax1 antagonizes Sry action in mammalian sex determination. Nature. 1998;391:761–7.PubMedGoogle Scholar
  53. 53.
    Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet. 2006;38:1304–9.PubMedGoogle Scholar
  54. 54.
    Flück CE, Meyer-Böni M, Pandey AV, Kempná P, Miller WL, Schoenle EJ, et al. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet. 2011;89:201–18.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Prader A. Genital findings in the female pseudo-hermaphroditism of the congenital adrenogenital syndrome; morphology, frequency, development and heredity of the different genital forms. Helv Paediatr Acta. 1954;9:231–48.PubMedGoogle Scholar
  56. 56.
    Kaftanovskaya EM, Feng S, Huang Z, Tan Y, Barbara AM, Kaur S, et al. Suppression of insulin-like3 receptor reveals the role of β-catenin and Notch signaling in gubernaculum development. Mol Endocrinol. 2011;25:170–83.PubMedGoogle Scholar
  57. 57.
    Feng S, Ferlin A, Truong A, Bathgate R, Wade JD, Corbett S, et al. INSL3/RXFP2 signaling in testicular descent. Ann N Y Acad Sci. 2009;1160:197–204.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol. 2004;270:1–18.PubMedGoogle Scholar
  59. 59.
    Kumagai J, Hsu SY, Matsumi H, Roh J-S, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277:31283–6.PubMedGoogle Scholar
  60. 60.
    Rajpert-De Meyts E, Hanstein R, Jørgensen N, Graem N, Vogt PH, Skakkebaek NE. Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod. 2004;19:1338–44.PubMedGoogle Scholar
  61. 61.
    Honecker F, Stoop H, de Krijger RR, Chris Lau Y-F, Bokemeyer C, Looijenga LHJ. Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells. J Pathol. 2004;203:849–57.PubMedGoogle Scholar
  62. 62.
    Hustin J, Collette J, Franchimont P. Immunohistochemical demonstration of placental alkaline phosphatase in various states of testicular development and in germ cell tumours. Int J Androl. 1987;10:29–35.PubMedGoogle Scholar
  63. 63.
    Rajpert-De Meyts E, Jørgensen N, Müller J, Skakkebaek NE. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes. J Pathol. 1996;178:166–9.PubMedGoogle Scholar
  64. 64.
    Robinson LL, Gaskell TL, Saunders PT, Anderson RA. Germ cell specific expression of c-kit in the human fetal gonad. Mol Hum Reprod. 2001;7:845–52.PubMedGoogle Scholar
  65. 65.
    Lee PA, Houk CP, Ahmed SF, Hughes IA. Consensus statement on management of intersex disorders. International consensus conference on intersex. Pediatrics. 2006;118:e488–500.PubMedGoogle Scholar
  66. 66.
    Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. J Pediatr Urol. 2006;2:148–62.PubMedGoogle Scholar
  67. 67.
    Cunniff C, Jones KL, Benirschke K. Ovarian dysgenesis in individuals with chromosomal abnormalities. Hum Genet. 1991;86:552–6.PubMedGoogle Scholar
  68. 68.
    Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab. 2014;100:E333–44.Google Scholar
  69. 69.
    Ahmed SF, Bashamboo A, Lucas-Herald A, McElreavey K. Understanding the genetic aetiology in patients with XY DSD. Br Med Bull. 2013;106:67–89.PubMedGoogle Scholar
  70. 70.
    Tannour-Louet M, Han S, Corbett ST, Louet J-F, Yatsenko S, Meyers L, et al. Identification of de novo copy number variants associated with human disorders of sexual development. PLoS One. 2010;5:e15392.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Grumbach MM, van Wyk JJ, Wilkins L. Chromosomal sex in gonadal dysgenesis (ovarian agenesis): relationship to male pseudohermaphrodism and theories of human sex differentiation. J Clin Endocrinol Metab. 1955;15:1161–93.PubMedGoogle Scholar
  72. 72.
    Swyer GI. Male pseudohermaphroditism: a hitherto undescribed form. Br Med J. 1955;2:709–12.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Berkovitz GD, Fechner PY, Zacur HW, Rock JA, Snyder HM, Migeon CJ, et al. Clinical and pathologic spectrum of 46,XY gonadal dysgenesis: its relevance to the understanding of sex differentiation. Medicine (Baltimore). 1991;70:375–83.Google Scholar
  74. 74.
    Sohval AR. Hermaphroditism with “atypical” or “mixed” gonadal dysgenesis. Relationship to gonadal neoplasm. Am J Med. 1964;36:281–92.PubMedGoogle Scholar
  75. 75.
    Krob G, Braun A, Kuhnle U. True hermaphroditism: geographical distribution, clinical findings, chromosomes and gonadal histology. Eur J Pediatr. 1994;153:2–10.PubMedGoogle Scholar
  76. 76.
    Ledig S, Hiort O, Wünsch L, Wieacker P. Partial deletion of DMRT1 causes 46,XY ovotesticular disorder of sexual development. Eur J Endocrinol. 2012;167:119–24.PubMedGoogle Scholar
  77. 77.
    Nielsen J, Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus. Den Hum Genet. 1991;87:81–3.Google Scholar
  78. 78.
    Hecht F, Macfarlane JP. Mosaicism in Turner’s syndrome reflects the lethality of XO. Lancet. 1969;2:1197–8.PubMedGoogle Scholar
  79. 79.
    Gravholt CH, Juul S, Naeraa RW, Hansen J. Prenatal and postnatal prevalence of Turner’s syndrome: a registry study. BMJ. 1996;312:16–21.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Singh RP, Carr DH. The anatomy and histology of XO human embryos and fetuses. Anat Rec. 1966;155:369–83.PubMedGoogle Scholar
  81. 81.
    Abramsky L, Chapple J. 47,XXY (Klinefelter syndrome) and 47,XYY: estimated rates of and indication for postnatal diagnosis with implications for prenatal counselling. Prenat Diagn. 1997;17:363–8.PubMedGoogle Scholar
  82. 82.
    Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88:622–6.PubMedGoogle Scholar
  83. 83.
    Hamerton JL, Canning N, Ray M, Smith S. A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. Clin Genet. 1975;8:223–43.PubMedGoogle Scholar
  84. 84.
    Chang HJ, Clark RD, Bachman H. The phenotype of 45,X/46,XY mosaicism: an analysis of 92 prenatally diagnosed cases. Am J Hum Genet. 1990;46:156–67.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Farrugia MK, Sebire NJ, Achermann JC, Eisawi A, Duffy PG, Mushtaq I. Clinical and gonadal features and early surgical management of 45,X/46,XY and 45,X/47,XYY chromosomal mosaicism presenting with genital anomalies. J Pediatr Urol. 2013;9:139–44.PubMedPubMedCentralGoogle Scholar
  86. 86.
    De Groote K, Cools M, De Schepper J, Craen M, François I, Devos D, et al. Cardiovascular pathology in males and females with 45,X/46,XY mosaicism. PLoS One. 2013;8:e54977.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Telvi L, Lebbar A, Del Pino O, Barbet JP, Chaussain JL. 45,X/46,XY mosaicism: report of 27 cases. Pediatrics. 1999;104:304–8.PubMedGoogle Scholar
  88. 88.
    Binkhorst M, de Leeuw N, Otten BJ. A healthy, female chimera with 46,XX/46,XY karyotype. J Pediatr Endocrinol Metab. 2009;22:97–102.PubMedGoogle Scholar
  89. 89.
    Schoenle E, Schmid W, Schinzel A, Mahler M, Ritter M, Schenker T, et al. 46,XX/46,XY chimerism in a phenotypically normal man. Hum Genet. 1983;64:86–9.PubMedGoogle Scholar
  90. 90.
    Niu D-M, Pan C-C, Lin C-Y, Hwang B, Chung M. Mosaic or chimera? Revisiting an old hypothesis about the cause of the 46,XX/46,XY hermaphrodite. J Pediatr. 2002;140:732–5.PubMedGoogle Scholar
  91. 91.
    Achermann JC, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet. 1999;22:125–6.PubMedGoogle Scholar
  92. 92.
    McElreavy K, Vilain E, Abbas N, Costa JM, Souleyreau N, Kucheria K, et al. XY sex reversal associated with a deletion 5′ to the SRY “HMG box” in the testis-determining region. Proc Natl Acad Sci U S A. 1992;89:11016–20.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Köhler B, Lin L, Ferraz-de-Souza B, Wieacker P, Heidemann P, Schröder V, et al. Five novel mutations in steroidogenic factor 1 (SF1, NR5A1) in 46,XY patients with severe underandrogenization but without adrenal insufficiency. Hum Mutat. 2008;29:59–64.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Lin L, Achermann JC. Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex Dev. 2008;2:200–9.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372:525–30.PubMedGoogle Scholar
  96. 96.
    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79:1111–20.PubMedGoogle Scholar
  97. 97.
    Cameron FJ, Hageman RM, Cooke-Yarborough C, Kwok C, Goodwin LL, Sillence DO, et al. A novel germ line mutation in SOX9 causes familial campomelic dysplasia and sex reversal. Hum Mol Genet. 1996;5:1625–30.PubMedGoogle Scholar
  98. 98.
    Benko S, Gordon CT, Mallet D, Sreenivasan R, Thauvin-Robinet C, Brendehaug A, et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J Med Genet. 2011;48:825–30.PubMedGoogle Scholar
  99. 99.
    Barbaro M, Oscarson M, Schoumans J, Staaf J, Ivarsson SA, Wedell A. Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene. J Clin Endocrinol Metab. 2007;92:3305–13.PubMedGoogle Scholar
  100. 100.
    Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet. 1994;7:497–501.PubMedGoogle Scholar
  101. 101.
    Köhler B, Biebermann H, Friedsam V, Gellermann J, Maier RF, Pohl M, et al. Analysis of the Wilms’ tumor suppressor gene (WT1) in patients 46,XY disorders of sex development. J Clin Endocrinol Metab. 2011;96:E1131–6.PubMedGoogle Scholar
  102. 102.
    Lourenço D, Brauner R, Rybczynska M, Nihoul-Fékété C, McElreavey K, Bashamboo A. Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc Natl Acad Sci U S A. 2011;108:1597–602.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Bashamboo A, Brauner R, Bignon-Topalovic J, Lortat-Jacob S, Karageorgou V, Lourenco D, et al. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum Mol Genet. 2014;23:3657–65.PubMedGoogle Scholar
  104. 104.
    Das DK, Rahate SG, Mehta BP, Gawde HM, Tamhankar PM. Mutation analysis of mitogen activated protein kinase 1 gene in Indian cases of 46,XY disorder of sex development. Indian J Hum Genet. 2013;19:437–42.PubMedPubMedCentralGoogle Scholar
  105. 105.
    De Mello MP, Coeli FB, Assumpção JG, Castro TM, Maciel-Guerra AT, Marques-de-Faria AP, et al. Novel DMRT1 3′UTR+11insT mutation associated to XY partial gonadal dysgenesis. Arq Bras Endocrinol Metabol. 2010;54:749–53.PubMedGoogle Scholar
  106. 106.
    Muroya K, Okuyama T, Goishi K, Ogiso Y, Fukuda S, Kameyama J, et al. Sex-determining gene(s) on distal 9p: clinical and molecular studies in six cases. J Clin Endocrinol Metab. 2000;85:3094–100.PubMedGoogle Scholar
  107. 107.
    Ledig S, Hiort O, Scherer G, Hoffmann M, Wolff G, Morlot S, et al. Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum Reprod. 2010;25:2637–46.PubMedGoogle Scholar
  108. 108.
    Veitia RA, Nunes M, Quintana-Murci L, Rappaport R, Thibaud E, Jaubert F, et al. Swyer syndrome and 46,XY partial gonadal dysgenesis associated with 9p deletions in the absence of monosomy-9p syndrome. Am J Hum Genet. 1998;63:901–5.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Vialard F, Ottolenghi C, Gonzales M, Choiset A, Girard S, Siffroi JP, et al. Deletion of 9p associated with gonadal dysfunction in 46,XY but not in 46,XX human fetuses. J Med Genet. 2002;39:514–8.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Canto P, Söderlund D, Reyes E, Méndez JP. Mutations in the desert hedgehog (DHH) gene in patients with 46,XY complete pure gonadal dysgenesis. J Clin Endocrinol Metab. 2004;89:4480–3.PubMedGoogle Scholar
  111. 111.
    Umehara F, Tate G, Itoh K, Yamaguchi N, Douchi T, Mitsuya T, et al. A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am J Hum Genet. 2000;67:1302–5.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Callier P, Calvel P, Matevossian A, Makrythanasis P, Bernard P, Kurosaka H, et al. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet. 2014;10:e1004340.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Hiort O, Gramss B, Klauber GT. True hermaphroditism with 46,XY karyotype and a point mutation in the SRY gene. J Pediatr. 1995;126:1022.PubMedGoogle Scholar
  114. 114.
    Braun A, Kammerer S, Cleve H, Löhrs U, Schwarz HP, Kuhnle U. True hermaphroditism in a 46,XY individual, caused by a postzygotic somatic point mutation in the male gonadal sex-determining locus (SRY): molecular genetics and histological findings in a sporadic case. Am J Hum Genet. 1993;52:578–85.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Maier EM, Leitner C, Löhrs U, Kuhnle U. True hermaphroditism in an XY individual due to a familial point mutation of the SRY gene. J Pediatr Endocrinol Metab. 2003;16:575–80.PubMedGoogle Scholar
  116. 116.
    Kremer H, Kraaij R, Toledo SP, Post M, Fridman JB, Hayashida CY, et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet. 1995;9:160–4.PubMedGoogle Scholar
  117. 117.
    Richard N, Leprince C, Gruchy N, Pigny P, Andrieux J, Mittre H, et al. Identification by array-Comparative Genomic Hybridization (array-CGH) of a large deletion of luteinizing hormone receptor gene combined with a missense mutation in a patient diagnosed with a 46,XY disorder of sex development and application to prenatal diagnosis. Endocr J. 2011;58:769–76.PubMedGoogle Scholar
  118. 118.
    Smith DW, Lemli L, Opitz JM. A newly recognized syndrome of multiple congenital anomalies. J Pediatr. 1964;64:210–7.PubMedGoogle Scholar
  119. 119.
    Nowaczyk MJM, Irons MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C Semin Med Genet. 2012;160C:250–62.PubMedGoogle Scholar
  120. 120.
    Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet. 2012;380:1419–28.PubMedGoogle Scholar
  121. 121.
    Hannema SE, Scott IS, Hodapp J, Martin H, Coleman N, Schwabe JW, et al. Residual activity of mutant androgen receptors explains wolffian duct development in the complete androgen insensitivity syndrome. J Clin Endocrinol Metab. 2004;89:5815–22.PubMedGoogle Scholar
  122. 122.
    Hannema SE, Scott IS, Rajpert-De Meyts E, Skakkebaek NE, Coleman N, Hughes IA. Testicular development in the complete androgen insensitivity syndrome. J Pathol. 2006;208:518–27.PubMedGoogle Scholar
  123. 123.
    Cools M, van Aerde K, Kersemaekers A-M, Boter M, Drop SLS, Wolffenbuttel KP, et al. Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilization syndromes. J Clin Endocrinol Metab. 2005;90:5295–303.PubMedGoogle Scholar
  124. 124.
    Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M. The androgen receptor gene mutations database: 2012 update. Hum Mutat. 2012;33:887–94.PubMedGoogle Scholar
  125. 125.
    Cools M, Drop SLS, Wolffenbuttel KP, Oosterhuis JW, Looijenga LHJ. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr Rev. 2006;27:468–84.PubMedGoogle Scholar
  126. 126.
    Knebelmann B, Boussin L, Guerrier D, Legeai L, Kahn A, Josso N, et al. Anti-Müllerian hormone Bruxelles: a nonsense mutation associated with the persistent Müllerian duct syndrome. Proc Natl Acad Sci U S A. 1991;88:3767–71.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Imbeaud S, Faure E, Lamarre I, Mattéi MG, di Clemente N, Tizard R, et al. Insensitivity to anti-müllerian hormone due to a mutation in the human anti-müllerian hormone receptor. Nat Genet. 1995;11:382–8.PubMedGoogle Scholar
  128. 128.
    Abdullah NA, Pearce MS, Parker L, Wilkinson JR, Jaffray B, McNally RJQ. Birth prevalence of cryptorchidism and hypospadias in northern England, 1993–2000. Arch Dis Child. 2007;92:576–9.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Ahmed SF, Dobbie R, Finlayson AR, Gilbert J, Youngson G, Chalmers J, et al. Prevalence of hypospadias and other genital anomalies among singleton births, 1988–1997, in Scotland. Arch Dis Child Fetal Neonatal Ed. 2004;89:F149–51.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Fredell L, Iselius L, Collins A, Hansson E, Holmner S, Lundquist L, et al. Complex segregation analysis of hypospadias. Hum Genet. 2002;111:231–4.PubMedGoogle Scholar
  131. 131.
    Augarten A, Yahav Y, Kerem BS, Halle D, Laufer J, Szeinberg A, et al. Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet. 1994;344:1473–4.PubMedGoogle Scholar
  132. 132.
    Mickle J, Milunsky A, Amos JA, Oates RD. Congenital unilateral absence of the vas deferens: a heterogeneous disorder with two distinct subpopulations based upon aetiology and mutational status of the cystic fibrosis gene. Hum Reprod. 1995;10:1728–35.PubMedGoogle Scholar
  133. 133.
    Bouron-Dal Soglio D, Harvey I, Jovanovic M, Oligny LL, Fournet J-C. Bilateral cystic dysplasia of the rete testis with renal adysplasia. Pediatr Dev Pathol. 2006;9:157–60.PubMedGoogle Scholar
  134. 134.
    Smith NM, Byard RW, Bourne AJ. Testicular regression syndrome–a pathological study of 77 cases. Histopathology. 1991;19:269–72.PubMedGoogle Scholar
  135. 135.
    Law H, Mushtaq I, Wingrove K, Malone M, Sebire NJ. Histopathological features of testicular regression syndrome: relation to patient age and implications for management. Fetal Pediatr Pathol. 2006;25:119–29.PubMedGoogle Scholar
  136. 136.
    Bobrow M, Gough MH. Bilateral absence of testes. Lancet. 1970;1:366.Google Scholar
  137. 137.
    Zenaty D, Dijoud F, Morel Y, Cabrol S, Mouriquand P, Nicolino M, et al. Bilateral anorchia in infancy: occurrence of micropenis and the effect of testosterone treatment. J Pediatr. 2006;149:687–91.PubMedGoogle Scholar
  138. 138.
    Marcantonio SM, Fechner PY, Migeon CJ, Perlman EJ, Berkovitz GD. Embryonic testicular regression sequence: a part of the clinical spectrum of 46,XY gonadal dysgenesis. Am J Med Genet. 1994;49:1–5.PubMedGoogle Scholar
  139. 139.
    Josso N, Briard ML. Embryonic testicular regression syndrome: variable phenotypic expression in siblings. J Pediatr. 1980;97:200–4.PubMedGoogle Scholar
  140. 140.
    Abeyaratne MR, Aherne WA, Scott JE. The vanishing testis. Lancet. 1969;2:822–4.PubMedGoogle Scholar
  141. 141.
    Naffah J. Familial testicular regression syndrome. Bull Acad Natl Med. 1989;173:709–14. discussion 714–5.PubMedGoogle Scholar
  142. 142.
    De Grouchy J, Gompel A, Salomon-Bernard Y, Kuttenn F, Yaneva H, Paniel JB, et al. Embryonic testicular regression syndrome and severe mental retardation in sibs. Ann Genet. 1985;28:154–60.PubMedGoogle Scholar
  143. 143.
    Brauner R, Neve M, Allali S, Trivin C, Lottmann H, Bashamboo A, et al. Clinical, biological and genetic analysis of anorchia in 26 boys. PLoS One. 2011;6:e23292.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Mathews R, Sheridan ME, Patil U. Neonatal testicular loss secondary to perinatal trauma in breech presentation. BJU Int. 1999;83:1069–70.PubMedGoogle Scholar
  145. 145.
    Lourenço D, Brauner R, Lin L, De Perdigo A, Weryha G, Muresan M, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360:1200–10.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001;27:159–66.PubMedGoogle Scholar
  147. 147.
    Gao X, Chen G, Huang J, Bai Q, Zhao N, Shao M, et al. Clinical, cytogenetic, and molecular analysis with 46,XX male sex reversal syndrome: case reports. J Assist Reprod Genet. 2013;30:431–5.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Cox JJ, Willatt L, Homfray T, Woods CG. A SOX9 duplication and familial 46,XX developmental testicular disorder. N Engl J Med. 2011;364:91–3.PubMedGoogle Scholar
  149. 149.
    Vetro A, Ciccone R, Giorda R, Patricelli MG, Della Mina E, Forlino A, et al. XX males SRY negative: a confirmed cause of infertility. J Med Genet. 2011;48:710–2.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet A. 2012;158A:1759–64.PubMedGoogle Scholar
  151. 151.
    Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest. 2011;121:328–41.PubMedGoogle Scholar
  152. 152.
    Radi O, Parma P, Imbeaud S, Nasca MR, Uccellatore F, Maraschio P, et al. XX sex reversal, palmoplantar keratoderma, and predisposition to squamous cell carcinoma: genetic analysis in one family. Am J Med Genet A. 2005;138A:241–6.PubMedGoogle Scholar
  153. 153.
    Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351:792–8.PubMedGoogle Scholar
  154. 154.
    Mandel H, Shemer R, Borochowitz ZU, Okopnik M, Knopf C, Indelman M, et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet. 2008;82:39–47.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency–a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9.PubMedGoogle Scholar
  156. 156.
    Berkovitz GD, Fechner PY, Marcantonio SM, Bland G, Stetten G, Goodfellow PN, et al. The role of the sex-determining region of the Y chromosome (SRY) in the etiology of 46,XX true hermaphroditism. Hum Genet. 1992;88:411–6.PubMedGoogle Scholar
  157. 157.
    Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, Maggiulli G, et al. Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat. 2008;29:220–6.PubMedGoogle Scholar
  158. 158.
    Pittock ST, Babovic-Vuksanovic D, Lteif A. Mayer-Rokitansky-Küster-Hauser anomaly and its associated malformations. Am J Med Genet A. 2005;135:314–6.PubMedGoogle Scholar
  159. 159.
    Hahn-Pedersen J, Kvist N, Nielsen OH. Hydrometrocolpos: current views on pathogenesis and management. J Urol. 1984;132:537–40.PubMedGoogle Scholar
  160. 160.
    Cools M, Stoop H, Kersemaekers A-MF, Drop SLS, Wolffenbuttel KP, Bourguignon J-P, et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab. 2006;91:2404–13.PubMedGoogle Scholar
  161. 161.
    Donahoe PK, Crawford JD, Hendren WH. Mixed gonadal dysgenesis, pathogenesis, and management. J Pediatr Surg. 1979;14:287–300.PubMedGoogle Scholar
  162. 162.
    Gouw AS, Elema JD, Bink-Boelkens MT, de Jongh HJ, ten Kate LP. The spectrum of splenogonadal fusion. Case report and review of 84 reported cases. Eur J Pediatr. 1985;144:316–23.PubMedGoogle Scholar
  163. 163.
    Ferro F, Lais A, Boldrini R, De Peppo F, Federici G, Bosman C. Hepatogonadal fusion. J Pediatr Surg. 1996;31:435–6.PubMedGoogle Scholar
  164. 164.
    Lund JM, Bouhadiba N, Sams V, Tsang T. Hepato-testicular fusion: an unusual case of undescended testes. BJU Int. 2001;88:439–40.PubMedGoogle Scholar
  165. 165.
    Fan R, Faught PR, Sun J, Meldrum KK. Hepatogonadal fusion. J Pediatr Surg. 2012;47:e5–6.PubMedGoogle Scholar
  166. 166.
    Ogilvy-Stuart AL, Brain CE. Early assessment of ambiguous genitalia. Arch Dis Child. 2004;89:401–7.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Department of Histopathology, Camelia Botnar LaboratoriesGreat Ormond Street Hospital for ChildrenLondonUK
  2. 2.Department of HistopathologyGreat Ormond Street HospitalLondonUK

Personalised recommendations