Liver and Gallbladder

  • Rachel Mary BrownEmail author


This chapter will consider normal development, functional adaptations at birth, and abnormal development. Liver and gallbladder anomalies are sometimes accompanied by abnormalities in other systems or seen as part of a fibrocystic syndrome/ciliopathy. In neonatal cholestasis, or liver failure, the liver may be biopsied. Biopsy rates in these settings vary between centers. Gene chip analysis can be performed on peripheral blood, for conditions with known genetic mutations, and biopsy is regarded by some as a “third-line” investigation in biliary atresia. Despite this, there will always be cases where biopsy is a key contributor to the multidisciplinary diagnosis of neonatal liver disease. An approach to the interpretation of patterns of liver disease, representing common diagnoses, in this age group, is presented in the settings of neonatal jaundice and liver failure. Trauma and iatrogenic causes of liver disease are considered. Intestinal failure-associated liver disease is an example of the pathologist’s role in the timing and appropriateness of transplantation, by staging liver disease and excluding additional diseases or systemic conditions. Examination of the explanted organ confirms disease processes, important in follow-up for potentially recurrent conditions. Finally, the fetal and neonatal liver can be the site of tumor formation. Salient features of these are described.


Liver Development Fibrocystic Biopsy Cholestasis Jaundice Liver failure Parenteral nutrition Liver tumors 


  1. 1.
    Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175–89.PubMedGoogle Scholar
  2. 2.
    Lee JS, Ward WO, Knapp G, et al. Transcriptional ontogeny of the developing liver. BMC Genomics. 2012;13:33.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Haugen G, Kiseraud T, Godfrey K, et al. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24:599–605.PubMedGoogle Scholar
  4. 4.
    Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291:614–27.Google Scholar
  5. 5.
    Boulter L, Lu WY, Forbes SJ. Differentiation of progenitors in the liver: a matter of local choice. J Clin Invest. 2013;123:1867–73.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Carpentier R, Suñer RE, van Hul N, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology. 2011;141:1432–8, 1438.e1–4.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Beath SV. Hepatic function and physiology in the newborn. Semin Neonatol. 2003;8:337–46.PubMedGoogle Scholar
  8. 8.
    Burt AD, Portmann BC, Ferrell LD, editors. MacSween’s pathology of the liver. 6th ed. Churchill Livingstone, UK 2011.Google Scholar
  9. 9.
    Lisovsky M, Konstas AA, Misdraji J. Congenital extrahepatic portosystemic shunts (Abernethy malformation): a histopathologic evaluation. Am J Surg Pathol. 2011;35:1381–90.PubMedGoogle Scholar
  10. 10.
    Kelly DA, editor. Diseases of the liver and biliary system in children. 3rd ed. Blackwell Publishing, UK. 2008.Google Scholar
  11. 11.
    Desmet VJ. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc. 1998;73:80–9.PubMedGoogle Scholar
  12. 12.
    Raynaud P, Tate J, Callens C, et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology. 2011;53:1959–66.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wills ES, Roepman R, Drenth JP. Polycystic liver disease: ductal plate malformation and the primary cilium. Trends Mol Med. 2014;20:261–70.PubMedGoogle Scholar
  14. 14.
    Masyuk T, Masyuk A, LaRusso N. Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr Opin Gastroenterol. 2009;25:265–71.PubMedGoogle Scholar
  15. 15.
    Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kniseley AS. Biliary tract malformations. Am J Med Genet A. 2003;122:343–50.Google Scholar
  17. 17.
    Johnson CA, Gissen P, Sergi C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet. 2003;40:311–9.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis. 2014;10:96–107.PubMedGoogle Scholar
  19. 19.
    Akizu N, Silhavy JL, Rosti RO, et al. Mutations in CSPP1 lead to classical Joubert syndrome. Am J Hum Genet. 2014;94:80–6.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Schmidts M, Vodopiutz J, Christou-Savina S, et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet. 2013;93:932–44.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Todani T, Watanabe Y, Narusue M, et al. Congenital bile duct cysts: classification, operative procedures and review of 37 cases including cancer arising from choledochal cyst. Am J Surg. 1977;134:263–9.PubMedGoogle Scholar
  22. 22.
    Visser BC, Suh I, Way LW, et al. Congenital choledochal cysts in adults. Arch Surg. 2004;139:855–60.PubMedGoogle Scholar
  23. 23.
    Turowski C, Knisely AS, Davenport M. Role of pressure and pancreatic reflux in the etiology of choledochal malformation. Br J Surg. 2011;98:1319–26.PubMedGoogle Scholar
  24. 24.
    McKiernan P. Neonatal jaundice. Clin Res Hepatol Gastroenterol. 2012;36:253–6.PubMedGoogle Scholar
  25. 25.
    Moreira RK, Cabral R, Cowles RA, et al. Biliary atresia: a multidisciplinary approach to diagnosis and management. Arch Pathol Lab Med. 2012;136:746–60.PubMedGoogle Scholar
  26. 26.
    Perlmutter DH, Shepherd RW. Extrahepatic biliary atresia: a disease or a phenotype? Hepatology. 2002;35:1297–304.PubMedGoogle Scholar
  27. 27.
    Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. 2009;374:1704–13.PubMedGoogle Scholar
  28. 28.
    Kahn E. Biliary atresia revisited. Pediatr Dev Pathol. 2004;7:109–24.PubMedGoogle Scholar
  29. 29.
    Knisely AS. Pediatric biliary tract disease. Curr Diagn Pathol. 2002;8:152–9.Google Scholar
  30. 30.
    Nietgen GW, Vacanti JP, Perez-Atayde AR. Intrahepatic bile duct loss in biliary atresia despite portoenterostomy: a consequence of ongoing obstruction? Gastroenterology. 1992;102:2126–33.PubMedGoogle Scholar
  31. 31.
    Azar G, Beneck D, Lane B, et al. Atypical morphological presentation of biliary atresia and value of serial liver biopsies. J Pediatr Gastroenterol Nutr. 2002;34:212–5.PubMedGoogle Scholar
  32. 32.
    Superina R, Magee JC, Brandt ML, Childhood Liver Disease Research and Education Network, et al. The anatomic pattern of biliary atresia identified at time of Kasai hepatoportoenterostomy and early postoperative clearance of jaundice are significant predictors of transplant-free survival. Ann Surg. 2011;254:577–85.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gooptu B, Dickens JA, Lomas DA. The molecular and cellular pathology of α-antitrypsin deficiency. Trends Mol Med. 2014;20:116–27.PubMedGoogle Scholar
  34. 34.
    Alagille D. Alpha-1-antitrypsin deficiency. Hepatology. 1984;4:11S–4.PubMedGoogle Scholar
  35. 35.
    Torbenson M, Hart J, Westerhoff M, Azzam RK, et al. Neonatal giant cell hepatitis: histological and etiological findings. Am J Surg Pathol. 2010;34:1498–503.PubMedGoogle Scholar
  36. 36.
    Koukoulis G, Miele-Vergani G, Portmann B. Infantile liver giant cells: immunohistological study of their proliferative state and possible mechanisms of formation. Pediatr Dev Pathol. 1999;2:353–9.PubMedGoogle Scholar
  37. 37.
    Ishak KG. Hepatic morphology in the inherited metabolic diseases. Semin Liver Dis. 1986;6:246–58.PubMedGoogle Scholar
  38. 38.
    Jevon PJ, Dimmick JE. Histopathological approach to metabolic liver disease: part 2. Pediatr Dev Pathol. 1998;1:261–9.PubMedGoogle Scholar
  39. 39.
    Jevon PJ, Dimmick JE. Histopathological approach to metabolic liver disease: part 1. Pediatr Dev Pathol. 1998;1:179–99.PubMedGoogle Scholar
  40. 40.
    Kage M, Kosai K, Kojiro M, et al. Infantile cholestasis due to cytomegalovirus infection of the liver. A possible cause of paucity of interlobular bile ducts. Arch Pathol Lab Med. 1993;117:942–4.PubMedGoogle Scholar
  41. 41.
    Phillips MJ, Blendis LM, Poucell S, et al. Syncytial giant cell hepatitis. Sporadic hepatitis with distinctive pathological features, a severe clinical course, and paramyxoviral features. N Engl J Med. 1991;324:455–60.PubMedGoogle Scholar
  42. 42.
    Alagille D, Estrada A, Hadchouel M, et al. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr. 1987;110:195–200.PubMedGoogle Scholar
  43. 43.
    Hartley JL, Gissen P, Kelly DA. Alagille syndrome and other hereditary causes of cholestasis. Clin Liver Dis. 2013;17:279–300.PubMedGoogle Scholar
  44. 44.
    Yehezkely-Schildkraut V, Munichor M, Mandel H, et al. Nonsyndromic paucity of interlobular bile ducts; report of 10 patients. J Pediatr Gastroenterol Nutr. 2003;37:546–9.PubMedGoogle Scholar
  45. 45.
    Kahn E, Daum F, Markowicz J, et al. Nonsyndromatic paucity of interlobular bile ducts: light and electron microscopic evaluation of sequential liver biopsies in early childhood. Hepatology. 1986;6:890–901.PubMedGoogle Scholar
  46. 46.
    Hadchouel M, Hugon RN, Gautier M. Reduced ratio of portal tracts to paucity of intrahepatic bile ducts. Arch Pathol Lab Med. 1978;102:402.PubMedGoogle Scholar
  47. 47.
    Deutsch GH, Sokol RJ, Stathos TH, et al. Proliferation to paucity: evolution of bile duct abnormalities in a case of Alagille syndrome. Pediatr Dev Pathol. 2001;4:599–63.Google Scholar
  48. 48.
    Libbrecht L, Spinner NB, Moore EC, et al. Peripheral bile duct paucity and cholestasis in a liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol. 2005;29:820–6.PubMedGoogle Scholar
  49. 49.
    Subramaniam P, Knisely A, Portmann B, et al. Diagnosis of Alagille syndrome-25 years of experience at King’s College Hospital. J Pediatr Gastroenterol Nutr. 2011;52:84–9.PubMedGoogle Scholar
  50. 50.
    Knisely AS. Progressive intrahepatic cholestasis. A personal perspective. Pediatr Dev Pathol. 2000;3:113–25.PubMedGoogle Scholar
  51. 51.
    McKay KE, Bruce CK, Hartley JL et al. Mutation detection in cholestatic patients using microarray resequencing of ATP8B1 and ABCB11. Version 2. F1000Res. 2013 Feb 6 [revised 2013 Mar 20];2:32.Google Scholar
  52. 52.
    Chen JH, Fleming MD, Pinkus GS, et al. Pathology of the liver in familial hemophagocytic lymphohistiocytosis. Am J Surg Pathol. 2010;34:852–67.PubMedGoogle Scholar
  53. 53.
    Sundaram SS, Alonso EM, Narkewicz MR, Pediatric Acute Liver Failure Study Group, et al. Characterization and outcomes of young infants with acute liver failure. J Pediatr. 2011;159:813–8.e1.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Portmann BC. Liver biopsy in the diagnosis of inherited metabolic disorders. In: Anthony PP, MacSween RNM, editors. Recent advances in histopathology 13. Churchill Livingstone, UK. 1987. p. 139–59.Google Scholar
  55. 55.
    McClean P, Davison SM. Neonatal liver failure. Semin Neonatol. 2003;8:393–401.PubMedGoogle Scholar
  56. 56.
    Al-Hussaini A, Faqeih E, El-Hattab AW, et al. Clinical and molecular characteristics of mitochondrial DNA depletion syndrome associated with neonatal cholestasis and liver failure. J Pediatr. 2014;164:553–9.e1–2.PubMedGoogle Scholar
  57. 57.
    Bioulac-Sage P, Parrot-Rouland F, Mazat JP, et al. Fatal neonatal liver failure and mitochondrial cytopathy (oxidative phosphorylation deficiency): a light and electron microscopic study of the liver. Hepatology. 1993;18:839–46.PubMedGoogle Scholar
  58. 58.
    Chow CW, Thorburn DR. Morphological correlates of mitochondrial dysfunction in children. Hum Reprod. 2000;15:68–78.PubMedGoogle Scholar
  59. 59.
    Morris AA. Mitochondrial respiratory chain disorders and the liver. Liver. 1999;19:357–68.PubMedGoogle Scholar
  60. 60.
    Holme E, Lindstedt S. Nontransplant treatment of tyrosinemia. Clin Liver Dis. 2000;4:805–14.PubMedGoogle Scholar
  61. 61.
    Glasgow JF, Middleton B. Reye syndrome – insights on causation and prognosis. Arch Dis Child. 2001;85:351–3.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lopriore E, Mearin ML, Oepkes D, et al. Neonatal hemochromatosis: management, outcome, and prevention. Prenat Diagn. 2013;33:1221–5.PubMedGoogle Scholar
  63. 63.
    Pan X, Kelly S, Melin-Aldana H, Malladi P, Whitington PF. Novel mechanism of fetal hepatocyte injury in congenital alloimmune hepatitis involves the terminal complement cascade. Hepatology. 2010;51:2061–8.PubMedGoogle Scholar
  64. 64.
    Zoller H, Knisely AS. Control of iron metabolism–lessons from neonatal hemochromatosis. J Hepatol. 2012;56:1226–9.PubMedGoogle Scholar
  65. 65.
    Bonilla S, Prozialeck JD, Malladi P, et al. Neonatal iron overload and tissue siderosis due to gestational alloimmune liver disease. J Hepatol. 2012;56:1351–5.PubMedGoogle Scholar
  66. 66.
    Wang J, Atchison RW, Walpusk J, et al. Echovirus hepatic failure in infancy: report of four cases with speculation on the pathogenesis. Pediatr Dev Pathol. 2001;4:454–60.PubMedGoogle Scholar
  67. 67.
    White FV, Dehner P. Viral diseases of the liver in children: diagnostic and differential diagnostic considerations. Pediatr Dev Pathol. 2004;7:522–67.Google Scholar
  68. 68.
    McGoogan KE, Haafiz AB, González Peralta RP. Herpes simplex virus hepatitis in infants: clinical outcomes and correlates of disease severity. J Pediatr. 2011;159:608–11.PubMedGoogle Scholar
  69. 69.
    Chevret L, Boutolleau D, Halimi-Idri N, et al. Human herpesvirus-6 infection: a prospective study evaluating HHV-6 DNA levels in liver from children with acute liver failure. J Med Virol. 2008;80:1051–7.PubMedGoogle Scholar
  70. 70.
    Wang WH, Wang HL. Fulminant adenovirus hepatitis following bone marrow transplantation. A case report and brief review of the literature. Arch Pathol Lab Med. 2003;127:e246–8.PubMedGoogle Scholar
  71. 71.
    Bihari C, Rastogi A, Saxena P, et al. Parvovirus b19 associated hepatitis. Hepatol Res Treat. 2013;2013:472027.Google Scholar
  72. 72.
    Tovo PA, Pembrey LJ, Newell ML. Persistence rate and progression of vertically acquired hepatitis C infection. European pediatric hepatitis C virus infection. J Infect Dis. 2000;181:419–24.PubMedGoogle Scholar
  73. 73.
    Singer DB, Neave C, Oyer CE, et al. hepatic subcapsular hematomas in fetuses and neonatal infants. Pediatr Dev Pathol. 1999;2:215–20.PubMedGoogle Scholar
  74. 74.
    French CE, Waldstein G. Subcapsular hemorrhage of the liver in the newborn. Pediatrics. 1982;69:204–8.PubMedGoogle Scholar
  75. 75.
    Miller BM, Yoon JJ, Kim MH. Intrapartum rupture of the falciform ligament and umbilical vein. A rare cause of hemoperitoneum in the newborn. Clin Pediatr. 1987;26:316–8.Google Scholar
  76. 76.
    Hermansen MC, Hermansen MG. Intravascular catheter complications in the neonatal intensive care unit. Clin Perinatol. 2005;32:141–56.PubMedGoogle Scholar
  77. 77.
    Lichtman S, Guzman C, Moore D, et al. Morbidity after percutaneous liver biopsy. Arch Dis Child. 1987;62:901–4.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Short SS, Papillon S, Hunter CJ, et al. Percutaneous liver biopsy: pathologic diagnosis and complications in children. J Pediatr Gastroenterol Nutr. 2013;57:644–8.PubMedGoogle Scholar
  79. 79.
    Ovchinsky N, Moreira RK, Lefkowitch JH, Lavine JE. Liver biopsy in modern clinical practice: a pediatric point-of-view. Adv Anat Pathol. 2012;19:250–62.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu C, Aronow BJ, Jegga AG, et al. Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis. Gastroenterology. 2007;132:119–26.PubMedGoogle Scholar
  81. 81.
    Faa G, Ekstrom J, Castagnola M, et al. A developmental approach to drug-induced liver injury in newborns and children. Curr Med Chem. 2012;19:4581–94.PubMedGoogle Scholar
  82. 82.
    McIntyre J, Choonara I. Drug toxicity in the neonate. Biol Neonate. 2004;86:218–21.PubMedGoogle Scholar
  83. 83.
    Kelly DA. Preventing parenteral nutrition liver disease. Early Hum Dev. 2010;86:683–7.PubMedGoogle Scholar
  84. 84.
    Zambrano E, El-Hennawy M, Ehrenkranz RA, et al. Total parenteral nutrition induced liver pathology: an autopsy series of 24 newborn cases. Pediatr Dev Pathol. 2004;7:425–32.PubMedGoogle Scholar
  85. 85.
    Naini BV, Lassman CR. Total parenteral nutrition therapy and liver injury: a histopathologic study with clinical correlation. Hum Pathol. 2012;43:826–33.PubMedGoogle Scholar
  86. 86.
    Brown RM, Gray G, Poulton K, et al. Ground glass hepatocellular inclusions caused by disturbed glycogen metabolism in three children on parenteral nutrition. Pediatr Dev Pathol. 2009;12:79–80.PubMedGoogle Scholar
  87. 87.
    Fitzgibbons SC, Jones BA, Hull MA, et al. Relationship between biopsy-proven parenteral nutrition-associated liver fibrosis and biochemical cholestasis in children with short bowel syndrome. J Pediatr Surg. 2010;45:95–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    O’Connor M, Mangus RS, Tector AJ, et al. Utility of liver function tests including aminotransferase-to-platelet ratio index in monitoring liver dysfunction in short-gut infants of varying ages and intestinal lengths. J Pediatr Surg. 2011;46:1057–63.PubMedGoogle Scholar
  89. 89.
    Fiel MI, Wu HS, Iyer K, et al. Rapid reversal of parenteral-nutrition-associated cirrhosis following isolated intestinal transplantation. J Gastrointest Surg. 2009;13:1717–23.PubMedGoogle Scholar
  90. 90.
    Isaacs Jr H. Fetal and neonatal hepatic tumors. J Pediatr Surg. 2007;42:1797–803.PubMedGoogle Scholar
  91. 91.
    Christison-Lagay ER, Burrows PE, Alomari A, et al. Hepatic hemangiomas: subtype classification and development of a clinical practice algorithm and registry. J Pediatr Surg. 2007;42:62–7.PubMedGoogle Scholar
  92. 92.
    Kulungowski AM, Alomari AI, Chawla A, et al. Lessons from a liver hemangioma registry: subtype classification. J Pediatr Surg. 2012;47:165–70.PubMedGoogle Scholar
  93. 93.
    Roebuck D, Sebire N, Lehmann E, Barnacle A. Rapidly involuting congenital hemangioma (RICH) of the liver. Pediatr Radiol. 2012;42:308–14.PubMedGoogle Scholar
  94. 94.
    Picard A, Boscolo E, Khan ZA, et al. IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res. 2008;63:263–7.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Francis B, Hallam L, Kecskes Z, et al. Placental mesenchymal dysplasia associated with hepatic mesenchymal hamartoma in the newborn. Pediatr Dev Pathol. 2007;10:50–4.PubMedGoogle Scholar
  96. 96.
    Stringer MD, Alizai NK. Mesenchymal hamartoma of the liver: a systematic review. J Pediatr Surg. 2005;40:1681–90.PubMedGoogle Scholar
  97. 97.
    O’Sullivan MJ, Swanson PE, Knoll J, et al. Undifferentiated embryonal sarcoma with unusual features arising within mesenchymal hamartoma of the liver: report of a case and review of the literature. Pediatr Dev Pathol. 2001;4:482–9.PubMedGoogle Scholar
  98. 98.
    Spector LG, Birch J. The epidemiology of hepatoblastoma. Pediatr Blood Cancer. 2012;59:776–9.PubMedGoogle Scholar
  99. 99.
    Tanaka Y, Inoue T, Horie H. International pediatric liver cancer pathological classification: current trend. Int J Clin Oncol. 2013;18:946–54.PubMedGoogle Scholar
  100. 100.
    López-Terrada D, Alaggio R, de Dávila MT, et al. Towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Mod Pathol. 2014;27:472–91.PubMedGoogle Scholar
  101. 101.
    Turkel SB, Swanson V, Chandrasoma P. Malformations associated with congenital absence of the gallbladder. J Med Genet. 1983;20:445–9.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Chappell L, Gorman S, Campbell F, et al. A further example of a distinctive autosomal recessive syndrome comprising neonatal diabetes mellitus, intestinal atresias and gall bladder agenesis. Am J Med Genet A. 2008;146A:1713–7.PubMedGoogle Scholar
  103. 103.
    Concepcion JP, Reh CS, Daniels M, et al. Neonatal diabetes, gallbladder agenesis, duodenal atresia, and intestinal malrotation caused by a novel homozygous mutation in RFX6. Pediatr Diabetes. 2014;15:67–72.PubMedGoogle Scholar
  104. 104.
    Haoul R, Sukhotnik I, Toubi A. Neonatal sepsis presenting as a choledochal cyst. Acta Paediatr. 2008;97:246–9.Google Scholar
  105. 105.
    Triunfo S, Rosati P, Ferrara P, et al. Fetal cholelithiasis: a diagnostic update and a literature review. Clin Med Insights Case Rep. 2013;6:153–8.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Boito SM, Stujik PC, Ursem NT, et al. Assessment of fetal liver volume and umbilical venous volume flow in pregnancies complicated by insulin dependent diabetes mellitus. Br J Obstet Gynaecol. 2003;110:1007–13.Google Scholar
  107. 107.
    Patel KR, White FV, Deutsch GH. Hepatic steatosis is prevalent in stillborns delivered to women with diabetes. J Pediatr Gastroenterol Nutr. 2015;60(2):152–8.Google Scholar
  108. 108.
    Arnell H, Fischler B. Population-based study of incidence and clinical outcome of neonatal cholestasis in patients with Down syndrome. J Pediatr. 2012;161:899–902.PubMedGoogle Scholar
  109. 109.
    Toscano E, Trivellini V, Andria G. Cholelithiasis in Down’s syndrome. Arch Dis Child. 2001;85:242–3.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Department of Cellular PathologyQueen Elizabeth Hospitals BirminghamBirminghamUK

Personalised recommendations