Preterm birth is defined as delivery less than 37 weeks’ gestational age. The rate of preterm birth varies around the world and differs between developed and developing countries. It is 12–13 % in the United States of America (USA), 5–9 % in Europe, 9 % in Australia, and as high as 18 % in some countries in Africa. In developed countries the increased rate of preterm birth has been attributed to the changing demographics of childbearing. The mean age of childbearing has increased over the years with the average age of primiparous women in Australia now 28.3 years of age and the percentage of first-time mothers over 35 years of age in the USA now 4 %. Delayed childbearing is associated with a number of risk factors including preeclampsia and gestational diabetes. Infertility with the resultant use of in vitro fertilization methods and consequent twins/triplets are also significant issues. Another major risk factor for preterm birth is maternal obesity, which is increasing in both developed and developing countries. Complications of maternal obesity include maternal and fetal death, preeclampsia, gestational diabetes, and congenital abnormalities.


Prematurity Preterm birth Neonatal mortality rate (NMR) Preterm premature rupture of membranes (PPROM) Spontaneous preterm birth Tocolytics Antenatal steroids Preeclampsia Diabetes Fetal growth restriction (FGR) Small-for-gestational age (SGA) fetus Hypotension Patent ductus arteriosus (PDA) Bronchopulmonary dysplasia (BPD) Chronic lung disease (CLD) Hyaline membrane disease (HMD) Respiratory distress syndrome (RDS) Air leak syndromes Pulmonary interstitial emphysema (PIE) Pneumothorax Pneumomediastinum Pneumopericardium Pneumoperitoneum Necrotizing enterocolitis (NEC) Acute kidney injury Intraventricular hemorrhage Periventricular leukomalacia Retinopathy of prematurity (ROP) 


  1. 1.
    Lantos JD, Lauderdale DS. What is behind the rising rates of preterm birth in the United States? Rambam Maimonides Med J. 2011;2:e0065.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–72.PubMedGoogle Scholar
  3. 3.
    Li Z, Zeki R, Hilder L, Sullivan EA, Australian Institute of Health and Welfare. Australia’s mothers and babies. 2011. Last accessed 9th July 2014.
  4. 4.
    Matthews TJ, Hamilton BE. Delayed childbearing: more women are having their first child later in life. NCHS Data Brief. 2009;(21):1–8.Google Scholar
  5. 5.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.PubMedGoogle Scholar
  6. 6.
    Popkin BM, Slining MM. New dynamics in global obesity facing low- and middle-income countries. Obes Rev. 2013;14:11–20.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113:1126–33.PubMedGoogle Scholar
  8. 8.
    Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379:2151–61.PubMedGoogle Scholar
  9. 9.
    Health, United States. 2013. Last accessed 9th July 2014.
  10. 10.
    Childhood, Infant and Perinatal Mortality in England and Wales. 2012. Office for National Statistics. Last accessed 9th July 2014.
  11. 11.
    Oestergaard MZ, Inoue M, Yoshida S, Mahanani WR, Gore FM, Cousesn S, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: a systematic analysis of progress, projections, and priorities. PLoS Med. 2011;8:e1001080.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Katz J, Lee ACC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382:417–25.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mohangoo AD, Buitendijk SE, Szamotulska K, Chalmers J, Irgens LM, Bolumar F, et al. Gestational age patterns of fetal and neonatal mortality in Europe: results from the euro-peristat project. PLoS One. 2011;6:e24727.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Callaghan WM, MacDorman MF, Rasmussen SA, Qin C, Lackritz EM. The contribution of preterm birth to infant mortality rates in the United States. Pediatrics. 2006;118:1566–73.PubMedGoogle Scholar
  15. 15.
    Word Health Organisation and Unicef. Countdown to 2015 decade report (2000–2010): taking stock of maternal, newborn and child survival. 2010. Last accessed 9th July 2014.
  16. 16.
    Victoria’s Mothers and Babies. Victoria’s Maternal, Perinatal, Child and Adolescent Mortality. The consultative council on obstetric and paediatric mortality and morbidity. 2010/2011.$FILE/CCOPMM%20Report%202010%20and%202011%20final%20version-v02.pdf. Last accessed 9th July 2014.
  17. 17.
    Maternal and Perinatal Morality and Morbidity in Queensland. Queensland Maternal and Perinatal Quality Council Report. 2011. Last accessed 9th July 2014.
  18. 18.
    Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.PubMedGoogle Scholar
  19. 19.
    Romero R, Espinoza J, Kusanovic J, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006;113:17–42.PubMedGoogle Scholar
  20. 20.
    Goldenberg RL, Goepfert AR, Ramsey PS. Biochemical markers for the prediction of preterm birth. Am J Obstet Gynecol. 2005;192:S36–46.PubMedGoogle Scholar
  21. 21.
    Fiscella K. Race, perinatal outcome, and amniotic infection. Obstet Gynecol Surv. 1996;175:1317–24.Google Scholar
  22. 22.
    Brett KM, Strogatz DS, Savitz DA. Employment, job strain, and preterm delivery among women in north Carolina. Am J Public Health. 1997;87:199–204.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Smith LK, Draper ES, Manktelow BN, Field DJ, Dorlong JS. Socioeconomic inequalities in very preterm birth rates. Arch Dis Child Fetal Neonatal Ed. 2007;92:F11–4.PubMedGoogle Scholar
  24. 24.
    Thompson JM, Irgens LM, Rasmussen S, Dalveit AK. Secular trends in socio-economic status and the implications for preterm birth. Perinat Epidemiol. 2006;20:182–7.Google Scholar
  25. 25.
    Hendler I, Goldenberg RL, Mercer BM, Iams JD, Meis PJ, Moawad AH, et al. The preterm prediction study: association between maternal body mass index and spontaneous indicated preterm birth. Am J Obstet Gynecol. 2005;192:882–6.PubMedGoogle Scholar
  26. 26.
    Ehrenberg HM, Iams JD, Goldenberg RL, Newmand RB, Weiner SJ, Sibai BM, et al. Maternal obesity, uterine activity, and the risk of spontaneous preterm birth. Obstet Gynecol. 2009;113:48–52.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Christian P. Micronutrient and reproductive health issues; an international perspective. J Nutr. 2003;133:1969S–73.PubMedGoogle Scholar
  28. 28.
    Ribot B, Aranda N, Giralt M, Romeu M, Balaguer A, Arija V. Effect of different doses of iron supplementation during pregnancy on maternal and infant health. Ann Hematol. 2013;92:221–9.PubMedGoogle Scholar
  29. 29.
    Hancke K, Gundelach T, Hay B, Sander S, Reister F, Weiss JM. Pre-pregnancy obesity compromises obstetric and neonatal outcomes. J Perinat Med. 2014. pii: /j/jpme.ahead-of-print/jpm-2014-0069/jpm-2014-0069.xml. doi:  10.1515/jpm-2014-0069.
  30. 30.
    Szegda K, Markenson G, Bertone-Johnson ER, Chasan-Taber L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J Matern Fetal Neonatal Med. 2014;27:960–7.PubMedGoogle Scholar
  31. 31.
    Luger TM, Suls J, Vander Weg MW. “How robust is the association between smoking and depression in adults” a meta-analysis using linear mixed-effect models. Addict Behav. 2014;39:1418–29.PubMedGoogle Scholar
  32. 32.
    Lubman DI, Baker A. Cannabis and mental health – management in primary care. Aust Fam Physician. 2010;39:554–7.PubMedGoogle Scholar
  33. 33.
    Goodman DJ, Wolff KB. Screening for substance abuse in women’s health: a public health imperative. J Midwifery Womens Health. 2013;58:278–87.PubMedGoogle Scholar
  34. 34.
    Huybrechts KF, Sanghani RS, Avorn J, Urato AC. Preterm birth and antidepressant medication use during pregnancy: a systematic review and meta-analysis. PLoS One. 2014;9:e92778.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Lichtblau N, Schmidt FM, Schumann R, Kirkby KC, Himmerich H. Cytokines as biomarkers in depressive disorders: current standing and prospects. Int Rev Psychiatry. 2013;25:592–603.PubMedGoogle Scholar
  36. 36.
    Andres RL, Day MC. Perinatal complications associated with maternal tobacco use. Semin Neonatol. 2000;5:231–41.PubMedGoogle Scholar
  37. 37.
    Cnattinguis S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics and pregnancy outcomes. Nicotine Tob Res. 2004;6:S125–40.Google Scholar
  38. 38.
    Dumas A, Simmat-Durand L, Lejeune C. Pregnancy and substance use in France: a literature review. J Gynecol Obstet Biol Reprod (Paris). 2014; pii: S0368-2315(14)00142-2. doi: 10.1016/j.gyn.2014.05.008.
  39. 39.
    Centers for disease control and prevention morbidity and mortality weekly report. Trends in smoking before, during and after pregnancy – pregnancy risk assessment monitoring system, United States, 40 sites, 200–2010. US Department of Health and Human Services 8 Nov 2013.Google Scholar
  40. 40.
    Bloch M, Althabe F, Onyamboko M, Kaseba-Sata C, Castilla EE, Freire S, et al. Tobacco use and second hand smoke exposure during pregnancy: an investigative survey of women in 9 developing countries. Am J Public Health. 2008;98:1833–40.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Salihu HM, Wilson RE. Epidemiology of prenatal smoking and perinatal outcomes. Early Hum Dev. 2007;83:713–20.PubMedGoogle Scholar
  42. 42.
    Kuczkowski KM. The effects of drug abuse on pregnancy. Curr Opin Obstet Gynecol. 2007;19:578–85.PubMedGoogle Scholar
  43. 43.
    Fajemirokun-Odudeyi O, Sinha C, Tutty S, Pairaudeau P, Armstrong D, Phillips T, et al. Pregnancy outcome in women who use opiates. Eur J Obstet Gynecol Reprod Biol. 2006;126:170–5.PubMedGoogle Scholar
  44. 44.
    Desai A. Marijuana use and pregnancy – prevalence, associated behaviours, and birth outcomes. Obstet Gynecol. 2014;123:46S.Google Scholar
  45. 45.
    Kuzcowski M. Marijuana in pregnancy. Ann Acad Med Singapore. 2004;33:336–9.Google Scholar
  46. 46.
    DeFranco EA, Stamilio DM, Boslaugh SE, Gross GA, Muglia LJ. A short interpregnancy interval is a risk factor for preterm birth and its recurrence. Am J Obstet Gynecol. 2007;197:264e1–6.Google Scholar
  47. 47.
    Kazemier BM, Buijs PE, Mignini L, Limpens J, de Groot CJ, Mol BW, et al. Impact of obstetric history on the risk of spontaneous preterm birth in singleton and multiple pregnancies: a systematic review. BJOG. 2014. doi: 10.1111/1471-0528.12896.CrossRefPubMedGoogle Scholar
  48. 48.
    Arbyn M, Kyrgiou M, Simeons C, Raifu AO, Koliopoulos G, Martin-Hirsch P, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ. 2008;337:a1284.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Krupa FG, Faltin D, Cecatti JG, Surita FG, Souza JP. Predictors of preterm birth. Int J Gynaecol Obstet. 2006;195:643–50.Google Scholar
  50. 50.
    Andrews WW, Copper RL, Hauth JC, Goldenberg RL, Neely C, DuBard M. Second-trimester cervical ultrasound: associations with increased risk for recurrent early, spontaneous delivery. Obstet Gynecol. 2000;95:222–6.PubMedGoogle Scholar
  51. 51.
    Crane JM, Hutchens D. Transvaginal sonographic measurement of cervical length to predict preterm birth in asymptomatic women at increased risk: a systematic review. Ultrasound Obstet Gynecol. 2008;31:579–87.PubMedGoogle Scholar
  52. 52.
    Leitch H, Brumbauer M, Kaider A, Egarter C, Husslein P. Cervical length and dilation of the internal os detected by vaginal ultrasonography as markers of preterm delivery: a systematic review. Am J Obstet Gynecol. 1999;181:1465–72.Google Scholar
  53. 53.
    Werner EF, Han CS, Pettker CM, Buhimschi CS, Copel JA, Funai EF, et al. Universal cervical-length screening to prevent preterm birth: a cost-effectiveness analysis. Ultrasound Obstet Gynecol. 2011;38:32–7.PubMedGoogle Scholar
  54. 54.
    Conde-Agudelo A, Romero R, Nicolaides K, Chaiworapongsa T, O’Brien JM, Cetingoz E, et al. Vaginal progesterone versus cervical cerclage for the prevention of preterm birth in women with a sonographic short cervix, singleton gestation, and previous preterm birth: a systematic review and indirect comparison meta-analysis. Am J Obstet Gynecol. 2013;208:42.e1–18.Google Scholar
  55. 55.
    Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–7.PubMedGoogle Scholar
  56. 56.
    Russell P. Inflammatory lesions of the human placenta. 1. Clinical significance of acute chorioamnionitis. Diagn Gynecol Obstet. 1979;1:127–37.Google Scholar
  57. 57.
    Mueller-Heubach E, Rubenstein DN, Schwarz SS. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet Gynecol. 1990;75:622–6.PubMedGoogle Scholar
  58. 58.
    Watts DH, Krohn MA, Hillier SL, Eschenbach DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol. 1992;79:351–7.PubMedGoogle Scholar
  59. 59.
    Gibbs RS, Romero R, Hillier SL, Eschenbach DA, Sweet RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol. 1992;166:1515–28.PubMedGoogle Scholar
  60. 60.
    Romero R, Sirtori M, Oyarzun E, Avila C, Mazor M, Callahan R, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989;161:817–24.PubMedGoogle Scholar
  61. 61.
    Andrews WW, Hauth JC, Goldenberg RL, Gomez R, Romero R, Cassell GH. Amniotic fluid interleukin-6: correlation with upper genital tract microbial colonization and gestational age in women delivered following spontaneous labor versus indicated delivery. Am J Obstet Gynecol. 1995;173:606–12.PubMedGoogle Scholar
  62. 62.
    Krohn MA, Hillier SL, Nugent RP, Cotch MF, Carey JC, Gibbs RS, et al. The genital flora of women with intraamniotic infection. J Infect Dis. 1995;171:1475–80.PubMedGoogle Scholar
  63. 63.
    Hillier SL, Krohn MA, Cassen E, Easterling TR, Rabe LK, Eschenbach DA. The role of bacterial vaginosis and vaginal bacteria in amniotic fluid infection in women in preterm labor with intact fetal membranes. Clin Infect Dis. 1994;20:S276–8.Google Scholar
  64. 64.
    McDonald HM, Brocklehurst P, Gordon A. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev. 2013;(1):CD000262.Google Scholar
  65. 65.
    Lamont RF. Can antibiotics prevent preterm birth – the pro and con debate. BJOG. 2005;112:67–73.PubMedGoogle Scholar
  66. 66.
    Carroll SG, Papioannou S, Mtumazah IL, Philpott-Howard J, Nicolaides KH. Lower genital tract swabs in the prediction of intrauterine infection in preterm prelabour rupture of the membranes. Br J Obstet Gynaecol. 1996;103:54–9.Google Scholar
  67. 67.
    Goldenberg RL, Andrews WW, Goepfort AR, Faye-Petersen O, Cliver SP, Carlo WA, et al. The Alabama preterm birth study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborns. Am J Obstet Gynecol. 2008;198:43.e1–5.Google Scholar
  68. 68.
    Yoon BH, Romero R, Yang SH, Jun JK, Kim IO, Choi JH, Syn HC. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996;174:1433–40.PubMedGoogle Scholar
  69. 69.
    Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, Han TR. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000;182:675–81.PubMedGoogle Scholar
  70. 70.
    Yoon BH, Romero R, Kim KS. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1999;181:773–9.PubMedGoogle Scholar
  71. 71.
    Kent A, Dahlstrom JE. Chorioamnionitis/funisitis and the development of bronchopulmonary dysplasia. J Paediatr Child Health. 2004;40:356–9.PubMedGoogle Scholar
  72. 72.
    Kent A, Lomas F, Hurrion E, Dahlstrom JE. Antenatal steroids may reduce adverse neurological outcome following chorioamnionitis: neurodevelopmental outcome and chorioamnionitis in premature infants. J Paediatr Child Health. 2005;41:186–90.PubMedGoogle Scholar
  73. 73.
    Goldenberg RL, Mercer BM, Meis PJ, Cooper RL, Das A, McNellis D. The preterm prediction study: fetal fibronectin testing and spontaneous preterm birth. Obstet Gynecol. 1996;87:643–8.PubMedGoogle Scholar
  74. 74.
    Lu GC, Goldenberg RL, Cliver SP, Kreaden US, Andrews WW. Vaginal fetal fibronectin levels and spontaneous preterm birth in symptomatic women. Obstet Gynecol. 2001;97:225–8.PubMedGoogle Scholar
  75. 75.
    Boots AB, Sanchex-Ramos L, Bowers DM, Kaunitz AM, Zamora J, Schlattmann P. The short-term prediction of preterm birth: a systematic review and diagnostic metaanalysis. Am J Obstet Gynecol. 2014;210:54e.1–10.Google Scholar
  76. 76.
    DeFranco EA, Lewis DF, Odibo AO. Improving the screening accuracy for preterm labor: is the combination of fetal fibronectin and cervical length in symptomatic patients a useful predictor of preterm birth? A systematic review. Am J Obstet Gynecol. 2013;208:233.e1–6.Google Scholar
  77. 77.
    Liong S, Di Quinzio MK, Fleming G, Permezel M, Rice GE, Georgiou HM. New biomarkers for the prediction of spontaneous preterm labour in symptomatic pregnant women: a comparison with fetal fibronectin. The ref BJOG 2015;122:370–9.Google Scholar
  78. 78.
    Winkvist A, Mogren I, Hogberg U. Familial patterns in birth characteristics: impact on individual and population risks. Int J Epidemiol. 1998;27:248–54.PubMedGoogle Scholar
  79. 79.
    Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW. The risk of preterm birth across generations. Obstet Gynecol. 1997;90:63–7.PubMedGoogle Scholar
  80. 80.
    Wilcox AJ, Skjaerven R, Lie RT. Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol. 2008;167:474–9.PubMedGoogle Scholar
  81. 81.
    Holst D, Garnier Y. Preterm birth and inflammation – the role of genetic polymorphisms. Eur J Obstet Gynecol Reprod Biol. 2008;141:3–9.PubMedGoogle Scholar
  82. 82.
    Wu W, Clark EAS, Stoddard GJ, Watkins WS, Esplin MS, Manuck TA, et al. Effect of interleukin-6 polymorphism on risk of preterm birth within population strata: a meta-analysis. BMC Genet. 2013;14:30.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Harmon QE, Engel SM, Olshan AF, Moran T, Stuebe AM, Luo J, et al. Association of polymorphisms in natural killer cell- related genes with preterm birth. Am J Epidemiol. 2013;178:1208–18.PubMedPubMedCentralGoogle Scholar
  84. 84.
    O’Callaghan ME, MacLennan AH, McMichael GL, Haan EA, Dekker GA. Single nucleotide polymorphism associations with preterm delivery: a case-control replication study and meta-analysis. Pediatr Res. 2013;74:433–8.PubMedGoogle Scholar
  85. 85.
    Gomez LM, Sammel MD, Appleby DH, Elovitz MA, Baldwin DA, Jeffcoat MK, et al. Evidence of a gene-environment interaction that predisposes to spontaneous preterm birth: a role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response. Am J Obstet Gynecol. 2010;202:386.e1–6.Google Scholar
  86. 86.
    Jaffe S, Normand N, Jayaram A, Orfanelli T, Doulaveris G, Passos M, et al. Unique variation in genetic selection among black north American women and its potential influence on pregnancy outcome. Med Hypotheses. 2013;81:919–22.PubMedGoogle Scholar
  87. 87.
    Keirse MJNC. The history of tocolysis. BJOG. 2003;110:94–7.PubMedGoogle Scholar
  88. 88.
    Flenady V, Wojcieszek AM, Papatsonis DN, Stock OM, Murray L, Jardine LA, et al. Calcium channel blockers for inhibiting preterm labour and birth. Cochrane Database Syst Rev. 2014;(6):CD002255.Google Scholar
  89. 89.
    Vogel JP, Nardin JM, Dowswell T, West HM, Oladapo OT. Combination of tocolytic agents for inhibiting preterm labour. Cochrane Database Syst Rev. 2014;(7):CD006169.Google Scholar
  90. 90.
    Flenady V, Reinebrant HE, Liley HG, Tambimuttu EG, Papatsonis DN. Oxytocin receptor antagonists for inhibiting preterm labour. Cochrane Database Syst Rev. 2014;(6):CD004452.Google Scholar
  91. 91.
    Crowther CA, Brown J, McKinlay CJ, Middleton P. Magnesium sulphate for preventing preterm birth in threatened preterm labour. Cochrane Database Syst Rev. 2014;(8):CD001060.Google Scholar
  92. 92.
    Doyle LW, Crowther CA, Middleton P, Marret S, Rouse D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009;(1):CD004661.Google Scholar
  93. 93.
    Nanda K, Cook LA, Gallo MF, Grimes DA. Terbutaline pump maintenance therapy after threatened preterm labour for preventing preterm birth. Cochrane Database Syst Rev. 2002;(4):CD003933.Google Scholar
  94. 94.
    Dodd JM, Crowther CA, Dare MR, Middleton P. Oral betamimetics for maintenance therapy after threatened preterm labour. Cochrane Database Syst Rev. 2006;(1):CD003927.Google Scholar
  95. 95.
    Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454.Google Scholar
  96. 96.
    Crowther CA, McKinlay CJ, Middleton P, harding JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev. 2011;(6):CD003935.Google Scholar
  97. 97.
    Brownfoot FC, Gagliardi DI, Bain E, Middleton P, Crowther CA. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013;(8):CD 006764.Google Scholar
  98. 98.
    Lo JO, Mission JF, Caughey AB. Hypertensive disease of pregnancy and maternal mortality. Curr Opin Obstet Gynecol. 2013;2:124–32.Google Scholar
  99. 99.
    Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25:391–403.PubMedGoogle Scholar
  100. 100.
    Zhang J, Meikle S, Trumble A. Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States. Hypertens Pregnancy. 2003;22:203–12.PubMedGoogle Scholar
  101. 101.
    Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies. Am J Obstet Gynecol. 2002;187:416–23.Google Scholar
  102. 102.
    Luo Z-C, An N, Xu H-R, Larante A, Audibert F, Fraser WD. The effects and mechanism of primiparity on the risk of pre-eclampsia: a systematic review. Paediatr Perinat Epidemiol. 2007;21 (Suppl 1):36–45.PubMedGoogle Scholar
  103. 103.
    Odegård RA, Vatten LJ, Nilsen ST, Salvesen KA, Austgulen R. Risk factors and clinical manifestation of pre-eclampsia. BJOG. 2000;107:1410–6.PubMedGoogle Scholar
  104. 104.
    Mostello D, Kallogjeri D, Tungsiripat R, Leet T. Recurrence of preeclampsia: effects of gestational age at delivery of the first pregnancy, body mass index, paternity, and interval between births. Am J Obstet Gynecol. 2008;199:e1–7.Google Scholar
  105. 105.
    Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Bodnar LM, Ness RB, Harger GF, Roberts JM. Inflammation and triglycerides partially mediate the effect of prepregnancy body mass index on the risk of preeclampsia. Am J Epidemiol. 2005;162:1198–206.PubMedGoogle Scholar
  107. 107.
    Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol. 2011;25:329–42.PubMedGoogle Scholar
  108. 108.
    England L, Zhang J. Smoking and risk of preeclampsia: a systematic review. Front Biosci. 2007;12:2471–83.PubMedGoogle Scholar
  109. 109.
    Sibai BM, Hauth J, Caritis S, Lindheimer MD, MacPherson C, Klebanoff M, et al. Hypertensive disorders in twin versus singleton pregnancies. Am J Obstet Gynecol. 2000;182:938–42.PubMedGoogle Scholar
  110. 110.
    Bdolah Y, Lam C, Rajakumar A, Shivalingappa V, Mutter W, Sachs BP, et al. Twin pregnancy and the risk of preeclampsia: bigger placenta or relative ischemia? Am J Obstet Gynecol. 2008;198:428.e1–6.Google Scholar
  111. 111.
    Sibai BM, Ewell M, Levine RJ, Klebanoff MA, Esterlitz J, Catalano PM, et al. Risk factors associated with preeclampsia in healthy nulliparous women. Am J Obstet Gynecol. 1997;177:1003–10.PubMedGoogle Scholar
  112. 112.
    Knuist M, Bonsel GJ, Zondervan HA, Treffers PE. Risk factors for preeclampsia in nulliparous women in distinct ethnic groups: a prospective cohort study. Obstet Gynecol. 1998;92:174–8.PubMedGoogle Scholar
  113. 113.
    Stampalija T, Gyte GM, Alfirevic Z. Utero-placental Doppler ultrasound for improving pregnancy outcome. Cochrane Database Syst Rev. 2010;(9):CD008363.Google Scholar
  114. 114.
    Duley L, Henderson-Smart DJ, Meher S, King JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007;(2):CD004659.Google Scholar
  115. 115.
    Henderson JT, Whitlock EP, O’Connor E, Senger CA, Thompson JH, Rowland MG. Low-dose aspiring for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. Preventive services task force. Ann Intern Med. 2014;160:695–703.PubMedGoogle Scholar
  116. 116.
    Thangaratinam S, Langenveld J, Mol BW, Khan KS. Prediction and primary prevention of pre-eclampsia. Best Pract Res Clin Obstet Gynaecol. 2011;25:419–33.PubMedGoogle Scholar
  117. 117.
    Slattery MM, Geary M, Morrison JJ. Obstetric antecedents for preterm delivery. J Perinat Med. 2008;36:306–9.PubMedGoogle Scholar
  118. 118.
    Lawrence JM, Contreras R, Chen W, Sacks DA. Trends in the prevalence of pre-existing diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care. 2008;31:899–904.PubMedGoogle Scholar
  119. 119.
    Ballas J, Moore TR, Ramos GA. Management of diabetes in pregnancy. Curr Diab Rep. 2012;12:33–42.PubMedGoogle Scholar
  120. 120.
    Gizzo S, Patrelli TS, Rossanese M, Noventa M, et al. An update on diabetic women obstetrical outcomes linked to preconception and pregnancy glycemic profile: a systematic literature review. Sci World J. 2013:254901.Google Scholar
  121. 121.
    Murphy HR, Steel SA, Roland JM, Morris D, Ball V, Campbell PJ, et al. Obstetric and perinatal outcomes in pregnancies complicated by Type 1 and Type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabet Med. 2011;28:1060–7.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Falavigna M, Schmidt MI, Trujillo J, Alves LF, Wendland ER, Torloni MR, et al. Effectiveness of gestational diabetes treatment: a systematic review with quality of evidence assessment. Diabetes Res Clin Pract. 2012;98:396–405.PubMedGoogle Scholar
  123. 123.
    Poolsup N, Suksomboon N, Amin M. Effect of treatment of gestational diabetes mellitus: a systematic review and meta-analysis. PLoS ONE. 2014;9:e92485.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Groom KM, Poppe KK, North RA, McCowan LM. Small-for-gestational-age infants classified by customized or population birthweight centiles: impact of gestational age at delivery. Am J Obstet Gynecol. 2007;197:239.e1.Google Scholar
  125. 125.
    Bukowski R, Hansen NI, Willinger M, Reddy UM, Parker CB, Pinar H, et al. Fetal growth and risk of stillbirth: a population-based case-control study. PLoS Med. 2014;11:e1001633.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Maternal and perinatal mortality and morbidity in Queensland. Queensland Maternal and Perinatal Quality Council Report. 2013. Last accessed 1.10.14.
  127. 127.
  128. 128.
    Royal College of Obstetricians and Gynaecologists. Greentop Guideline No. 31. The investigation and management of the small-for-gestational-age fetus. 2014. Last accessed 1.10.2014.
  129. 129.
    Lee J, Rajadurai VS, Tan KW. Blood pressure standards for very low birthweight infants during the first day of life. Arch Dis Child Fetal Neonatal Ed. 1999;81:F168–70.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol. 1995;15:470–9.PubMedGoogle Scholar
  131. 131.
    Kent AL, Meskell S, Falk MC, Shadbolt B. Normative blood pressure data in non-ventilated premature neonates from 28–36 weeks gestation. Pediatr Nephrol. 2009;24:141–6.PubMedGoogle Scholar
  132. 132.
    Bada HS, Korones SB, Perry EH, Arheart KL, Ray JD, Pourcyrous M, et al. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr. 1990;117:607–14.PubMedGoogle Scholar
  133. 133.
    Al Tawil KI, El Mahdy HS, Al Rifai MT, Tamim HM, Ahmed IA, Al Saif SA. Risk factors for isolated periventricular leukomalacia. Pediatr Neurol. 2012;46:149–53.PubMedGoogle Scholar
  134. 134.
    Goldberg RN, Chung D, Goldman SL, Bancalari E. The association of rapid volume expansion and intraventricular hemorrhage in the preterm infant. J Pediatr. 1980;96:1060–3.PubMedGoogle Scholar
  135. 135.
    Osborn DA, Evans N. Early colume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syt Rev. 2004;(2):CD002055.Google Scholar
  136. 136.
    Subhedar NV, Shaw NJ. Dopamine versus dobuatmine for hypotensive preterm infants. Cochrane Database Syst Rev. 2003;(3):CD001242.Google Scholar
  137. 137.
    Ibrahim H, Sinha IP, Subhedar NV. Corticosteroids for treating hypotension in preterm infants. Cochrane Database Syst Rev. 2011;(12):CD003662.Google Scholar
  138. 138.
    Dempsey EM, Barrington KJ, Marlow N, O’Donnell CP, Miletin J, Naulaers G, et al. Management of hypotension in preterm infants (The HIP Trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology. 2014;105:275–81.PubMedGoogle Scholar
  139. 139.
    Clyman RI. The role of patent ductus arteriosus and its treatments in the development of bronchopulmonary dysplasia. Semin Perinatol. 2013;37:102–7.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Hammerman C, Bin-Nun A, Kaplan M. Managing the patent ductus arteriosus in the premature neonate: a new look at what we thought we knew. Semin Perinatol. 2012;36:130–8.PubMedGoogle Scholar
  141. 141.
    Van Overmeire B, Chemtob S. The pharmacologic closure of the patent ductus arteriosus. Semin Fetal Neonatal Med. 2005;10:177–84.PubMedGoogle Scholar
  142. 142.
    Clyman RI, Couto J, Murphy GM. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all? Semin Perinatol. 2012;36:123–9.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Bose CL, Laughon MM. Patent ductus arteriosus: lack of evidence for common treatments. Arch Dis Child Fetal Neonatal Ed. 2007;92:F498–502.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2013;(4):CD003481.Google Scholar
  145. 145.
    Kent AL, Koina ME, Gubhaju L, Cullen-McEwen LA, Bertram JF, Lynnhtun J, et al. Indomethacin administered early in the postnatal period results in reduced glomerular number in the adult rat. Am J Physiol Renal Physiol. 2014;307:F1105–10. pii: ajprenal.00328.2014. Epub ahead of print.Google Scholar
  146. 146.
    Hammerman C, Bin-Nun A, Markovitch E, Schimmel MS, Kaplan M, Fink D. Ductal closure with paracetamol: a surprising new approach to patent ductus arteriosus treatment. Pediatrics. 2011;128:e1618–21.PubMedGoogle Scholar
  147. 147.
    Oncel MY, Yurttutan S, Degirmencioglu H, Uras N, Altug N, Erdeve O, et al. Intravenous paracetamol treatment in the management of patent ductus arteriosus in extremely low birth weight infants. Neonatology. 2013;103:166–9.PubMedGoogle Scholar
  148. 148.
    Yurttutan S, Oncel MY, Arayicı S, Uras N, Altug N, Erdeve O, et al. A different first choice drug in the medical management of patent ductus arteriosus: oral paracetamol. J Matern-Fetal Neonatal Med. 2013;26:825–7.PubMedGoogle Scholar
  149. 149.
    Oncel MY, Yurttutan S, Uras N, Altug N, Ozdemir R, Ekmen S, et al. An alternative drug (paracetamol) in the management of patent ductus arteriosus in ibuprofen-resistant or contraindicated preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F94.PubMedGoogle Scholar
  150. 150.
    Allegaert K, Anderson B, Simons S, van Overmeire B. Paracetamol to induce ductus arteriosus closure: is it valid? Arch Dis Child. 2013;98:462–6.PubMedGoogle Scholar
  151. 151.
    Malvuya MN, Ohlsson A, Shah SS. Surgical versus medical treatment with cyclooxygenase inhibitors for sympotamitc patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2013;(3):CD003951.Google Scholar
  152. 152.
    Jhaveri N, Moon-Grady A, Clyman RI. Early surgical ligation versus a conservative approach for management of patent ductus arteriosus that fails to close after indomethacin treatment. J Pediatr. 2010;157:381–7e.1.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Evans N. Preterm patent ductus arteriosus: should we treat it? J Paediatr Child Health. 2012;48:753–8.PubMedGoogle Scholar
  154. 154.
    McNamara PJ, Stewart L, Shivananda SP, Stephens D, Sehgal A. Patent ductus arteriosus ligation is associated with impaired left ventricular systolic performance in premature infants weighing less than 100g. J Thorac Cardiovasc Surg. 2010;140:150–7.PubMedGoogle Scholar
  155. 155.
    Noori S, Friedlich P, Seri I, Wong P. Changes in myocardial function and haemodynamics after ligation of the ductus arteriosus in preterm infants. J Pediatr. 2007;150:597–602.PubMedGoogle Scholar
  156. 156.
    Kabra NS, Schmidt B, Roberts RS, Doyle LW, Papile L, Fanaroff A, et al. Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the trial of indomethacin prophylaxis in preterms. J Pediatr. 2007;150:229–34e1.PubMedGoogle Scholar
  157. 157.
    Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, et al. Long term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001;344:1966–72.PubMedGoogle Scholar
  158. 158.
    Sehgal A, McNamara PJ. The ductus arteriosus: a refined approach! Semin Perinatol. 2012;36:105–13.PubMedGoogle Scholar
  159. 159.
    Kluckow M, Jeffery M, Gill A, Evans N. A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 2014;99:F99–104.PubMedGoogle Scholar
  160. 160.
    Gruenwald P. Surface tension as a factor in the resistance of neonatal lungs to aeration. Am J Obstet Gynecol. 1947;53:996–1007.PubMedGoogle Scholar
  161. 161.
    Pattle RE. Properties, function and origin of the alveolar lining layer. Nature. 1995;175:1125–6.Google Scholar
  162. 162.
    Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child. 1959;97:517–23.Google Scholar
  163. 163.
    Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline membrane disease. Lancet. 1980;1:55–9.PubMedGoogle Scholar
  164. 164.
    Gitlin JD, Soll RF, Parad RB, Horbar JD, Feldman HA, Lucey JF, et al. Randomized controlled trial of exogenous surfactant for the treatment of hyaline membrane disease. Pediatrics. 1987;79:31–7.PubMedGoogle Scholar
  165. 165.
    DeLemos RA, Shermeta DW, Knelson JH, Kotas R, Avery ME. Acceleration of appearance of pulmonary surfactant in the fetal lamb by administration of corticosteroids. Am Rev Respir Dis. 1970;102:459–61.PubMedGoogle Scholar
  166. 166.
    Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50:515–25.PubMedGoogle Scholar
  167. 167.
    Hamvas A. Inherited surfactant protein-B deficiency and surfactant protein-C associated disease: clinical features and evaluation. Semin Perinatol. 2006;30:316–26.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Stevens TP, Harrington EW, Blennow M, Soll RF. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(4):CD003063.Google Scholar
  169. 169.
    Martin RJ, Fanaroff AA. The preterm lung and airway: past, present and future. Pediatr Neonatol. 2013;54:228–34.PubMedGoogle Scholar
  170. 170.
    Greenough A, Bhojnagarwala B. Causes and management of pulmonary air leaks. Paediatr Child Health. 2012;22:523–7.Google Scholar
  171. 171.
  172. 172.
    Greenhough A, Roberton NRC. Morbidity and survival in neonates ventilated for respiratory distress. Br Med J. 1985;290:597–600.Google Scholar
  173. 173.
    Sarkar S, Bhagat I, Dechert R, Schumacher RE, Donn SM. Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am J Perinatol. 2009;26: 419–24.PubMedGoogle Scholar
  174. 174.
    Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respiratory therapy of hyaline membrane disease: bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Jobe AH. The new BPD: an arrest of lung development. Pediatr Res. 1999;46:641–3.PubMedGoogle Scholar
  176. 176.
    Laughon M, Allred EN, Nose C, O’Shea TM, Van Marter LJ, Ehrenkranz RA, et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. 2009;123:1124–31.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Carlo WA, McDonald SA, Fanaroff AA, Vohr BR, Stoll BJ, Ehrenkranz RA, et al. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks gestation. JAMA. 2011;306:2348–58.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123:1314–9.PubMedGoogle Scholar
  179. 179.
    Toce SS, Farrell PM, Leavitt LA, Samuels DP, Edwards DK. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984;138:581–5.PubMedGoogle Scholar
  180. 180.
    Wheeler KI, Klingenberg C, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Neonatology. 2011;100:219–27.PubMedGoogle Scholar
  181. 181.
    Tropea K, Christou H. Current pharmacologic approaches for prevention and treatment of bronchopulmonary dysplasia. Int J Pediatr. 2012;2012:598606. doi: 10.1155/2012/598606.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Brion LP, Primhak RA. Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;(9):CD001453.Google Scholar
  183. 183.
    Brion LP, Primhak RA, Yong W. Aerosolized diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2006;(3):CD001694.Google Scholar
  184. 184.
    Halliday HL, Ehrenkranz RA, Doyle LW. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;(5):CD001146.Google Scholar
  185. 185.
    Halliday HL, Ehrenkranz RA, Doyle LW. Late (>7 days) postnatal corticosteroids for chronic lungdisease in preterm infants. Cochrane Database Syst Rev. 2014;(5):CD001145.Google Scholar
  186. 186.
    Watterberg KL. Policy statement–postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics. 2010;126:800–8.PubMedGoogle Scholar
  187. 187.
    Shah SS, Ohlsson A, Halliday H, Shah VS. Inhaled versus systemic corticosteroids - for the treatment of chronic lung disease in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev. 2012;(5):CD002058.Google Scholar
  188. 188.
    Shah SS, Ohlsson A, Halliday H, Shah VS. Inhaled versus systemic corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2012;(5):CD002057.Google Scholar
  189. 189.
    Ghanta S. An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol. 2013;37:115–23.PubMedPubMedCentralGoogle Scholar
  190. 190.
    O’Reilly M, Thebaud B. The promise of stem cells in bronchopulmonary dysplasia. Semin Perinatol. 2013;37:79–84.PubMedGoogle Scholar
  191. 191.
    Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107:270–3.PubMedGoogle Scholar
  192. 192.
    American Academy of Pediatrics Committee on Nutrition. Nutritional needs of low-birth weight infants. Pediatrics. 1985;75:976–86.Google Scholar
  193. 193.
    De Curtis M, Rigo J. The nutrition of preterm infants. Early Hum Dev. 2012;88:55–7.Google Scholar
  194. 194.
    Tudehope D, Fewtrell M, Kashyap S, Udaeta E. Nutritional needs of the micropreterm infant. J Pediatr. 2013;162:S72–80.PubMedGoogle Scholar
  195. 195.
    Agostini C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.Google Scholar
  196. 196.
    Francescato G, Mosca F, Agosti M. Update on lipid and protein intakes in the critical newborn. J Matern Fetal Neonatal Med. 2012;25:60–2.PubMedGoogle Scholar
  197. 197.
    Thureen PJ, Melara D, Fennessey PV, Hay Jr WW. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res. 2003;53:24–32.PubMedGoogle Scholar
  198. 198.
    Simmer K. Aggressive nutrition for preterm infants: benefits and risks. Early Hum Dev. 2007;83:631–4.PubMedGoogle Scholar
  199. 199.
    Stephens BE, Walden RV, Gargus RA, Tucker R, McKinley L, Mance M, et al. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics. 2009;123:1337–43.PubMedGoogle Scholar
  200. 200.
    Carlson SE, Werkman SH, Rhodes PG, Tolley EA. Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am J Clin Nutr. 1993;58:35–42.PubMedGoogle Scholar
  201. 201.
    Makrides M, Gibson RA, McPhee AJ, Collins CT, Davis PG, Doyle LW, et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomised controlled trial. JAMA. 2009;301:175–82.PubMedGoogle Scholar
  202. 202.
    Drenckpohl D, McConnell C, Gaffney S, Niehaus M, Macwan KS. Randomised trial of very low birthweight infants receiving higher rates of infusion of intravenous fat emulsions during the first week of life. Pediatrics. 2008;122:743–51.PubMedGoogle Scholar
  203. 203.
    Sparks JW. Human intrauterine growth and nutrient accretion. Semin Perinatol. 1984;8:74–93.PubMedGoogle Scholar
  204. 204.
    Weiler HA, Wang Z, Atkinson SA. Dexamethasone treatment impairs calcium regulation and reduces bone mineralization in infant pigs. Am J Clin Nutr. 1995;61:805–11.PubMedGoogle Scholar
  205. 205.
    Zanardo V, Dani C, Trevisanuto D, Meneghetti S, Guglielmi A, Zacchello G, et al. Methylxanthines increase renal calcium excretion in preterm infants. Biol Neonate. 1995;68:169–74.Google Scholar
  206. 206.
    Venkataraman PS, Han BK, Tsang RC, Daugherty CC. Secondary hyperparathyroidism and bone disease in infants receiving long-term furosemide therapy. Am J Dis Child. 1983;137:1157–61.PubMedGoogle Scholar
  207. 207.
    Takada M, Shimada M, Hosono S, Tauchi M, Minato M, Takahashi S, et al. Trace elements and mineral requirements for very low birth weight infants in rickets of prematurity. Early Hum Dev. 1992;29:333–8.PubMedGoogle Scholar
  208. 208.
    Harrison CM, Gibson AT. Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F272–5.PubMedGoogle Scholar
  209. 209.
    Visser F, Sprij AJ, Brus F. The validity of biochemical markers in metabolic bone disease in preterm infants: a systematic review. Acta Paediatr. 2012;101:562–8.PubMedGoogle Scholar
  210. 210.
    Morgan JA, Young L, McGuire W. Pathogenesis and prevention of necrotizing enterocolitis. Curr Opin Infect Dis. 2011;24:183–9.PubMedGoogle Scholar
  211. 211.
    Fitzgibbons SC, Ching Y, Yu D, Carpenter J, Kenny M, Weldon C, et al. Mortality of necrotizing enterocolitis expressed by birth weight categories. J Pediatr Surg. 2009;44:1072–5.PubMedGoogle Scholar
  212. 212.
    Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.PubMedGoogle Scholar
  213. 213.
    Hentschel J, de Veer I, Gastmeier P, Ruden H, Obladen M. Neonatal nosocomial infection surveillance: incidences by site and cluster of necrotizing enterocolitis. Infection. 1999;27:2340238.Google Scholar
  214. 214.
    Boccia D, Stolfi I, Lana S, Moro ML. Nosocomial necrotizing enterocolitis outbreaks: epidemiology and control measures. Eur J Pediatr. 2001;160:385–91.PubMedGoogle Scholar
  215. 215.
    Neu J, Mshvildadze M, Mai V. A roadmap for understanding and preventing necrotizing enterocolitis. Curr Gastroenterol Rep. 2008;10:450–7.PubMedGoogle Scholar
  216. 216.
    Luig M, Lui K, NSW ACT NICUS Group. Epidemiology of necrotizing enterocolitis – part II: risks and susceptibility of premature infants during the surfactant era: a regional study. J Paediatr Child Health. 2005;41:174–9.PubMedGoogle Scholar
  217. 217.
    Downard CD, Renaud E, St Peter SD, Abdullah F, Islam S, Saito JM, et al. Treatment of necrotizing enterocolitis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg. 2012;47:2111–22.PubMedGoogle Scholar
  218. 218.
    Gephart SM, McGrath JM, Effken JA, Hlapern MD. Necrotizing enterocolitis risk: state of the science. Adv Neonatal Care. 2012;12:77–89.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Morgan J, Young L, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Sust Rev. 2013;(5):CD001970.Google Scholar
  220. 220.
    Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2013;(3):CD001241.Google Scholar
  221. 221.
    Quigley M, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2014;(4):CD002971.Google Scholar
  222. 222.
    Alfaleh K, Anabrees J, Bassler D, Al-Kharfi T. Probioitcs for prevention of necrotising enterocolitis in preterm neonates. Cochrane Database Syst Rev. 2011;(16):CD005496.Google Scholar
  223. 223.
    Musso CG, Chezzi L, Ferrais J. Renal physiology in newborns and old people: similar characteristics but different mechanisms. Int Urol Nephrol. 2004;36:273–6.PubMedGoogle Scholar
  224. 224.
    Sulyok E, Varga F, Gyory E, Jobst K, Csaba IF. On the mechanisms of renal sodium handling in newborn infants. Biol Neonate. 1980;37:75–9.PubMedGoogle Scholar
  225. 225.
    Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69:354–8.PubMedGoogle Scholar
  226. 226.
    Jetton J, Askenazi D. Acute kidney injury in the neonate. Clin Perinatol. 2014;41:487–502.PubMedGoogle Scholar
  227. 227.
    Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N. Acute kidney injury is independently associated with mortality in very low birth weight infants: a matched case-control analysis. Pediatr Nephrol. 2009;24:991–7.PubMedGoogle Scholar
  228. 228.
    Andreoli SP. Acute renal failure in the newborn. Semin Perinatol. 2004;28:112–23.PubMedGoogle Scholar
  229. 229.
    Smith LK, Draper ES, Field D. Long-term outcome or the tiniest or most immature babies: survival rates. Semin Fetal Neonatal Med. 2014;19:72–7.PubMedGoogle Scholar
  230. 230.
    Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371: 261–9.PubMedGoogle Scholar
  231. 231.
    Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular haemorrhage: a study of infants with birthweight <1500 g. J Pediatr. 1978;92:529–34.PubMedGoogle Scholar
  232. 232.
    Benders MJNL, Kersberge KJ, de Vries LS. Neuroimaging f white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol. 2014;41:69–82.PubMedGoogle Scholar
  233. 233.
    Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts: a review. J Neurosurg Pediatr. 2012;9:242–58.PubMedGoogle Scholar
  234. 234.
    Wong D, Abdel-Latif M, Kent A, NICUS Network. Antenatal steroid exposure and outcomes of very premature infants: a regional cohort study. Arch Dis Child Fetal Neonatal Ed. 2014;99:F12–20.PubMedGoogle Scholar
  235. 235.
    Scmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001;344:1966–72.PubMedGoogle Scholar
  236. 236.
    Backes CH, Rivera BK, Haque U, Bridge JA, Smith CV, Hutchon DJ, Mercer JS. Placental transfusion strategies in very preterm neonates: a systematic review and meta-analysis. Obstet Gynecol. 2014;124:47–56.PubMedGoogle Scholar
  237. 237.
    Chau V, McFadden DE, Poskitt KJ, Miller SP. Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol. 2014;41:83–103.PubMedGoogle Scholar
  238. 238.
    Kwon SH, Vasung L, Ment LR, Huppi PS. The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clin Perinatol. 2014;41:257–83.PubMedGoogle Scholar
  239. 239.
    Terry TL. Extreme prematurity and fibroplastic overgrowth of persistent vascular sheath behind each crystalline lens. Am J Ophthalmol. 1942;25:203–4.Google Scholar
  240. 240.
    Gilbert C. Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum Dev. 2008;84:77–82.PubMedGoogle Scholar
  241. 241.
    Hellstrom A, Smith LEH, Dammann O. Retinopathy of prematurity. Lancet. 2013;382:1445–57.PubMedPubMedCentralGoogle Scholar
  242. 242.
    Saugstad OD, Aune D. Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology. 2014;105:55–63.PubMedGoogle Scholar
  243. 243.
    Fierson WM, American Academy of Pediatrics Section on Ophthalmology, American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus, American Association of Certified Orthoptists. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2013;131:189–95.PubMedGoogle Scholar
  244. 244.
    Cryotherapy for Retinopathy of Prematurity Cooperative Group. Multicenter trial of cryotherapy for retinopathy of prematurity – preliminary results. Arch Ophthalmol. 1988;106:471–9.Google Scholar
  245. 245.
    Good WV, Hardy RJ, ETROP Multicenter Study Group. The multicenter study of early treatment for retinopathy of prematurity (ETROP). Ophthalmology. 2001;108:1013–4.PubMedGoogle Scholar
  246. 246.
    Darlow BA, Ells AL, Gilbert CE, Gole GA, Quinn GE. Are we there yet? Bevacizumab therapy for retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2013;98:F170–4.PubMedGoogle Scholar
  247. 247.
    Robertson CMT, Howarth TM, Bork DLR, Dinu IA. Permanent bilateral sensory and neural hearing loss of children after neonatal intensive care because of extreme prematurity: a thirty-year study. Pediatrics. 2009;123:e797–807.PubMedGoogle Scholar
  248. 248.
    Fawke J. Neurological outcomes following preterm births. Semin Fetal Neonatal Med. 2007;12:374–82.PubMedGoogle Scholar
  249. 249.
    Doyle LW, Ford G, Davis N. Health and hospitalisations after discharge in extremely low birth weight infants. Semin Neonatol. 2003;8:137–45.PubMedGoogle Scholar
  250. 250.
    Tammela OK. First-year infections after initial hospitalization in low birth weight infants with and without bronchopulmonary dysplasia. Scand J Infect Dis. 1992;24:515–24.PubMedGoogle Scholar
  251. 251.
    Halvorsen T, Skadberg BT, Eide GE, Roksund OD, Carlsen KH, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr. 2004;93:1294–300.PubMedGoogle Scholar
  252. 252.
    Vrijlandt EJ, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150:256–61.PubMedGoogle Scholar
  253. 253.
    Siltanen M, Savilahti E, Pohjavuori M, Kajosaari M. Respiratory symptoms and lung function in relation to atopy in children born preterm. Pediatr Pulmonol. 2004;37:43–9.PubMedGoogle Scholar
  254. 254.
    Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;19:105–11.PubMedGoogle Scholar
  255. 255.
    La Souef PN. Pediatric origins of adult lung diseases. 4. Tobacco related lung diseases begin in childhood. Thorax. 2000;55:1063–7.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Cunningham J, Docy DW, Speizer FE. Maternal smoking during pregnancy as a predictor of lung function in children. Am J Epidemiol. 1994;139:1139–52.PubMedGoogle Scholar
  257. 257.
    Li YF, Gilliland FD, Berhane K, McConnell R, Gauderman WJ, Rappaport EB, et al. Effects of in utero and environmental tobacco smoke exposure on lung function in boys and girls with and without asthma. Am J Respir Crit Care Med. 2000;162:2097–104.PubMedGoogle Scholar
  258. 258.
    Doyle LW, Ford GW, Olinsky A, Knoches AM, Callanan C. Passive smoking and respiratory function in very low birthweight children. Med J Aust. 1996;164:266–9.PubMedGoogle Scholar
  259. 259.
    Saigal S. Functional outcomes of very premature infants into adulthood. Semin Fetal Neonatal Med. 2014;19:125–30.PubMedGoogle Scholar
  260. 260.
    Saigal S, Stoskopf B, Pinelli J, Streiner D, Hoult L, Paneth N, et al. Self-perceived health-related quality of life of former extremely low birthweight infants at young adulthood. Pediatrics. 2006;118:1140–8.PubMedGoogle Scholar
  261. 261.
    Barker DJP, Osmond C. Infant mortality, childhood, nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.PubMedGoogle Scholar
  262. 262.
    Barker DJP. Developmental origins of chronic disease. Public Health. 2012;126:185–9.PubMedGoogle Scholar
  263. 263.
    Kent AL. Developmental origins of health and disease: what should neonatologists/paediatricians be considering about the long-term health of their patients? J Paediatr Child Health. 2012;48:730–4.PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Department of NeonatologyCentenary Hospital for Women and Children, Canberra HospitalWodenAustralia

Personalised recommendations