Skip to main content

Mesh-Based Modeling of Individual Cells and Their Dynamics in Biological Fluids

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 606))

Abstract

This text is aimed at providing both basic and advanced knowledge on the individual cell modeling in a flow. Besides the overview of various existing approaches, it is focused on mesh-based model and on its capabilities to cover complex mechano-elastic properties combined with adhesion and magnetic phenomena. We also describe validation procedures, offer an example of use of the model for better understanding of cell behavior and a short overview of future research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlrichs, P., Dunweg, B.: Lattice-Boltzmann simulation of polymer-solvent systems. Int. J. Mod. Phys. C 8, 1429–1438 (1998)

    Article  Google Scholar 

  2. Akoun, G., Yonnet, J.: 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Trans. Magn. 20(5), 1962–1964 (1984). doi:10.1109/TMAG.1984.1063554

    Article  Google Scholar 

  3. Alon, R., Chen, S., Puri, K., Finger, E., Springer, T.: The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell Biol. 138(5), 1169–1180 (1997)

    Article  Google Scholar 

  4. Arnold, A., Lenz, O., Kesselheim, S., Weeber, R., Fahrenberger, F., Roehm, D., Košovan, P., Holm, C.: ESPResSo 3.1—molecular dynamics software for coarse-grained models. In: Griebel, M., Schweitzer, M. (eds.) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol. 89, pp. 1–23. Springer, New York (2013)

    Google Scholar 

  5. Basu, H., Dharmadhikari, A.K., Dharmadhikari, J.A., Sharma, S., Mathur, D.: Tank treading of optically trapped red blood cells in shear flow. Biophys. J. 101, 1604–1612 (2011)

    Article  Google Scholar 

  6. Chen, S., Doolen, G.: Lattice-Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998). doi:10.1146/annurev.fluid.30.1.329

    Article  MathSciNet  Google Scholar 

  7. Cimrák, I.: Cell-in-fluid research group (2015). http://cell-in-fluid.fri.uniza.sk

  8. Cimrák, I.: A simplified model for dynamics of cell rolling and cell-surface adhesion. In: AIP Conference Proceedings, 1648, 210005 (2015). doi:10.1063/1.4912490

  9. Cimrák, I., Gusenbauer, M., Jančigová, I.: An ESPResSo implementation of elastic objects immersed in a fluid. Comput. Phys. Commun. 185(3), 900–907 (2014). doi:10.1016/j.cpc.2013.12.013

    Article  Google Scholar 

  10. Cimrák, I., Gusenbauer, M., Schrefl, T.: Modelling and simulation of processes in microfluidic devices for biomedical applications. Comput. Math. Appl. 64(3), 278–288 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cimrák, I., Jančigová, I., Bachratá, K., Bachratý, H.: On elasticity of spring network models used in blood flow simulations in ESPResSo. In: Bisschoff, M., Oñate, E., Owen, D., Ramm, E., Wriggers, P. (eds.) III International Conference on Particle-based Methods—Fundamentals and Applications Particles 2013, pp. 133–144 (2013)

    Google Scholar 

  12. Cimrák, I., Tóthová, R., Jančigová, I.: Recent advances in mesh-based modeling of individual cells in biological fluids. In: 2014 10th International Conference on Digital Technologies (DT), pp. 25–31 (2014)

    Google Scholar 

  13. Dao, M., Li, J., Suresh, S.: Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26, 1232–1244 (2006)

    Article  Google Scholar 

  14. Derby, N., Olbert, S.: Cylindrical magnets and ideal solenoids. Am. J. Phys. 78(3), 229–235 (2010). doi:10.1119/1.3256157

    Google Scholar 

  15. Dong, C., Lei, X.X.: Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J. Biomech. 33(1), 35–43 (2000)

    Article  Google Scholar 

  16. Du, F., Baune, M., Thoming, J.: Insulator-based dielectrophoresis in viscous media—simulation of particle and droplet velocity. J. Biomech. 65, 452–458 (2007)

    Google Scholar 

  17. Dunweg, B., Ladd, A.J.C.: Lattice-Boltzmann simulations of soft matter systems. Adv. Polym. Sci. 221, 89–166 (2009)

    Google Scholar 

  18. Dupin, M., Halliday, I., Care, C., Alboul, L.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75, 066707 (2007)

    Google Scholar 

  19. Evans, E., Waugh, R., Melnik, L.: Elastic area compressibility modulus of red cell membrane. Biophys. J. 16(6), 585–595 (1976)

    Article  Google Scholar 

  20. Fedosov, D.: Multiscale modeling of blood flow and soft matter. Ph.D. thesis, Brown University (2010)

    Google Scholar 

  21. Feng, Z.G., Michaelides, E.E.: Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202, 20–51 (2005)

    Google Scholar 

  22. Fischer, T.M.: Shape memory of human red blood cells. Biophys J. 86(5), 3304–3313 (2004). doi:10.1016/S0006-3495(04)74378-7

    Article  Google Scholar 

  23. Fåhraeus, R.: The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)

    Google Scholar 

  24. Fåhraeus, R., Lindqvist, T.: The viscosity of blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568 (1931)

    Google Scholar 

  25. Goldsmith, H.L.: Red cell motions and wall interactions in tube flow. Fed. Proc. 30, 1578–1590 (1971)

    Google Scholar 

  26. Gronowicz, G., Swift, H., Steck, T.L.: Maturation of the reticulocyte in vitro. J. Cell Sci. 71, 177–197 (1984)

    Google Scholar 

  27. Gusenbauer, M., Kovacs, A., Reichel, F., Exl, L., Bance, S., Ozelt, H., Schrefl, T.: Self-organizing magnetic beads for biomedical applications. J. Magn. Magn. Mater. 324(6), 977–982 (2012). doi:10.1016/j.jmmm.2011.09.034

    Article  Google Scholar 

  28. Hayes, M.A., Polson, N.A., Garcia, A.A.: Active control of dynamic supraparticle structures in microchannels. Langmuir 17(9), 2866–2871 (2001). doi:10.1021/la001655g

    Article  Google Scholar 

  29. Holm, C., Arnold, A., Lenz, O., Kesselheim, S.: ESPResSo Documentation (2014). http://espressomd.org/wordpress/documentation

  30. Hosseini, S.M., Feng, J.: A particle-based model for the transport of erythrocytes in capillaries. Chem. Eng. Sci. 64, 4488–4497 (2009)

    Article  Google Scholar 

  31. Inglis, D.W., Riehn, R., Austin, R.H., Sturm, J.C.: Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 85, 5093–5095 (2004)

    Article  Google Scholar 

  32. Jančigová, I., Cimrák, I.: Non-uniform force allocation for area preservation in spring network models. Int. J. Numer. Meth. Biomed. Engng. In print

    Google Scholar 

  33. Jančigová, I., Tóthová, R.: Scalability of forces in mesh-based models of elastic objects. In: ELEKTRO 2014: 10th International Conference, pp. 562–566. IEEE (2014)

    Google Scholar 

  34. Krishnamurthy, S., Yadav, A., Phelan, P.E., Calhoun, R., Vuppu, A.K., Garcia, A.A., Hayes, M.A.: Dynamics of rotating paramagnetic particle chains simulated by particle dynamics, Stokesian dynamics and lattice-Boltzmann methods. Microfluid. Nanofluid. 5(1), 33–41 (2007). doi:10.1007/s10404-007-0214-z

    Article  Google Scholar 

  35. Lee, S., Ahn, K., Lee, S., Sun, K., Goedhart, P., Hardeman, M.: Shear induced damage of red blood cells monitored by the decrease of their deformability. Korea-Aust. Rheol. J. 16(3), 141–146 (2004)

    Google Scholar 

  36. MacMeccan, R.M.: Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. Ph.D. thesis, Georgia Institute of Technology (2007)

    Google Scholar 

  37. Melle, S., Calderón, O.G., Rubio, M.A., Fuller, G.G.: Microstructure evolution in magnetorheological suspensions governed by mason number. Phys. Rev. E 68(4), 041503 (2003)

    Google Scholar 

  38. Melville, D., Paul, F., Roath, S.: Direct magnetic separation of red cells from whole blood. Nature 255, 706 (1975)

    Google Scholar 

  39. Mills, J.P., Qie, L., Dao, M., Lim, C.T., Suresh, S.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mol. Cell. Biomech. 1(3), 169–180 (2004)

    Google Scholar 

  40. Molday, R.S., Yen, S.P.S., Rembaum, A.: Applications of magnetic microspheres in labeling and separation of cells. Nature 268, 437–438 (1977)

    Article  Google Scholar 

  41. Nakamura, M., Bessho, S., Wada, S.: Spring network based model of a red blood cell for simulating mesoscopic blood flow. Int. J. Numer. Method Biomed. Eng. 29(1), 114–128 (2013). doi:10.1002/cnm.2501

    Article  MathSciNet  Google Scholar 

  42. Paul, F., Melville, D., Roath, S., Warhurst, D.C.: A bench top separator for malarial parasite concentration. IEEE Trans. Magn. MAG-17, 2822–2824 (1981)

    Google Scholar 

  43. Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Google Scholar 

  44. Philippova, O., Barabanova, A., Molchanov, V., Khokhlov, A.: Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur. Polym. J. 47(4), 542–559 (2011). doi:10.1016/j.eurpolymj.2010.11.006

    Article  Google Scholar 

  45. Popel, A.S., Johnson, P.C.: Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 43–69 (2005)

    Article  MathSciNet  Google Scholar 

  46. Pratt, E., Huang, C., Hawkins, B., Gleghorn, J., Kirby, B.J.: Rare cell capture in microfluidic devices. Chem. Eng. Sci. 66(7), 1508–1522 (2011)

    Google Scholar 

  47. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra, D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D., Biros, G.: Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’10, pp. 1–11. IEEE Computer Society, Washington, DC, USA (2010). doi:10.1109/SC.2010.42

  48. Rejniak, K.A.: Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front. Oncol. 2, 111 (2012)

    Google Scholar 

  49. Skalak, R., Branemark, P.: Deformation of red blood cells in capillaries. Science 164, 717–719 (1969)

    Article  Google Scholar 

  50. Taylor, C.A., Hughes, T.J., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2), 155–196 (1998). doi:10.1016/S0045-7825(98)80008-X

    Article  MATH  MathSciNet  Google Scholar 

  51. Tóthová, R., Cimrák, I.: Local stress analysis of red blood cells in shear flow. In: AIP Conference Proceedings, 1648, 210003 (2015). doi:10.1063/1.4912488

  52. Tóthová, R., Jančigová, I., Cimrák, I.: Energy contributions of different elastic moduli in mesh-based modeling of deformable object. In: ELEKTRO 2014: 10th International Conference, pp. 634–638. IEEE (2014)

    Google Scholar 

  53. Tsubota, K., Wada, S.: Elastic force of red blood cell membrane during tank-treading motion: consideration of the membrane’s natural state. Int. J. Mech. Sci. 52, 356–364 (2010)

    Article  Google Scholar 

  54. Wang, L., Lu, J., Marchenko, S., Monuki, E., Flanagan, L., Lee, A.: Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30, 782–791 (2009)

    Article  Google Scholar 

  55. Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., Williams, J.: Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46(11), 1810–1817 (2013). doi:10.1016/j.jbiomech.2013.05.010

    Article  Google Scholar 

  56. Xu, Y., Philips, J., Yan, J., Li, Q., Fan, Z., Tan, W.: Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Analytical Chemistry 81, 7436–7442 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0441-11. The work of Ivan Cimrák was also supported by the Marie-Curie grant No. PCIG10-GA-2011-303580.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Cimrák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cimrák, I., Jančigová, I., Tóthová, R., Gusenbauer, M. (2016). Mesh-Based Modeling of Individual Cells and Their Dynamics in Biological Fluids. In: Bris, R., Majernik, J., Pancerz, K., Zaitseva, E. (eds) Applications of Computational Intelligence in Biomedical Technology. Studies in Computational Intelligence, vol 606. Springer, Cham. https://doi.org/10.1007/978-3-319-19147-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19147-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19146-1

  • Online ISBN: 978-3-319-19147-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics