Skip to main content

Fluoro-polyanionic Compounds

  • Chapter
Book cover Lithium Batteries

Abstract

In this chapter, we present the progress that allows several lithium-intercalation compounds to become the active cathode element of a new generation of Li-ion batteries, namely the materials with a poly-anion-based structure M x (XO4) y (M is a transition-metal cation and X = P, S), which are promising to improve the technology of energy storage and electric transportation, and address the replacement of gasoline engine by meeting the increasing demand for green energy power sources. The electrode materials considered here are fluorine-containing compounds including fluorophosphates LiMPO4F (M = V, Fe, T), Li2 M′PO4F (M = Fe, Co, Ni), hybrid ion Li x Na1−x VPO4F, and fluorosulfates LiMSO4F; M = Fe, Co, Ni, Mn, Zn, Mg). The electrochemical performance of these materials as the active cathode element of Li-ion batteries is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154

    Article  Google Scholar 

  2. Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sourc 26:403–408

    Article  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  4. Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 5:A149–A151

    Article  Google Scholar 

  5. Yin C, Grondey H, Strobel P, Nazar LF (2004) Li2.5 V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem Mater 16:1456–1465

    Article  Google Scholar 

  6. Azmi BM, Ishihara T, Nishiguchi H, Takita Y (2005) LiVOPO4 as a new cathode materials for Li-ion rechargeable battery. J Power Sourc 146:525–528

    Article  Google Scholar 

  7. Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M (1999) Li/β-VOPO4: a new 4 V system for lithium batteries articles. J Electrochem Soc 146:4385–4389

    Google Scholar 

  8. Rousse G, Wurm C, Morcrette M, Rodriguez-Carvajal J, Gaubicher J, Masquelier C (2001) Crystal structure of a new vanadium(IV) diphosphate VP2O8, prepared by lithium extraction from LiVP2O8. Int J Inorg Mater 3:881–888

    Article  Google Scholar 

  9. Barker J, Gover RKB, Burns P, Bryan A (2005) LiVP2O8: a viable lithium-ion cathode material. Electrochem Solid State Lett 8:A446–A448

    Article  Google Scholar 

  10. Kim GH, Myung ST, Bang HJ, Prakash J, Sun YK (2004) Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via coprecipitation. Electrochem Solid State Lett 8:A480–A488

    Google Scholar 

  11. Son JT, Kim HG (2005) New investigation of fluorine-substituted spinel LiMn2O4−x F x by using sol–gel process. J Power Sourc 148:220–226

    Article  Google Scholar 

  12. Luo Q, Muraliganth T, Manthiram A (2009) On the incorporation of fluorine into the manganese spinel cathode lattice. Solid State Ionics 180:803–808

    Article  Google Scholar 

  13. Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9-yMyO4-zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z ≤ 0.2) cathodes for lithium ion batteries. J Mater Chem 21:10165–10180

    Article  Google Scholar 

  14. Yue P, Wang Z, Guo H, Xiong X, Li X (2013) A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials. Electrochim Acta 92:1–8

    Article  Google Scholar 

  15. Yue P, Wang Z, Li X, Xiong X, Wang J, Wu X, Guo H (2013) The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta 95:112–118

    Article  Google Scholar 

  16. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195:939–954

    Article  Google Scholar 

  17. Yun SH, Park KS, Park YJ (2010) The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material. J Power Sourc 195:6108–6115

    Article  Google Scholar 

  18. Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J Power Sourc 188:826–831

    Article  Google Scholar 

  19. Xu K, Jie Z, Li R, Chen Z, Wu S, Gu J, Chen J (2012) Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials. Electrochim Acta 60:130–133

    Article  Google Scholar 

  20. Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sourc 225:338–346

    Article  Google Scholar 

  21. Barpanda P, Tarascon JM (2013) Fluorine-based polyanionic compounds for high-voltage electrode materials (Chapter 8). In: Scrosati B, Abraham KM, Van Schalkwijk W, Hassoun J (eds) Lithium batteries: advanced technologies and applications. John Wiley & Sons, New York, NY

    Google Scholar 

  22. Julien CM, Mauger A (2013) Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988

    Article  Google Scholar 

  23. Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sourc 238:229–242

    Article  Google Scholar 

  24. Goodenough JB (1994) Design considerations. Solid State Ionics 69:184–198

    Article  Google Scholar 

  25. Islam MS, Fisher CAJ (2013) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204

    Article  Google Scholar 

  26. Saubanère M, Ben-Yahia M, Lemoigno F, Doublet ML (2013) Beyond the inductive effect to increase the working voltage of cathode materials for Li-ion batteries. ECS Meeting Abstracts MA2013-02, p 840

    Google Scholar 

  27. Goodenough JB (2002) Oxide cathodes (Chapter 4). In: van Schalkwijk W, Scrosati B (eds) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, NY

    Google Scholar 

  28. Arroyo de Dompablo ME, Amador U, Tarascon JM (2008) A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J Power Sourc 184:1251–1258

    Google Scholar 

  29. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10

    Article  Google Scholar 

  30. Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520

    Article  Google Scholar 

  31. Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 8:156–160

    Article  Google Scholar 

  32. Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398

    Article  Google Scholar 

  33. Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 22:1059–1080

    Article  Google Scholar 

  34. Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Tavorite lithium iron fluorophosphates cathode materials: phase transition and electrochemistry of LiFePO4F-Li2FePO4F. Electrochem Solid State Lett 13:A43–A48

    Article  Google Scholar 

  35. Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon JM (2009) Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem Mater 22:1142–1148

    Article  Google Scholar 

  36. Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68–84

    Article  Google Scholar 

  37. Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater 23:3854–3862

    Article  Google Scholar 

  38. Chowdari BVR, Mok KF, Xie JM, Gopalakrishnan R (1995) Electrical and structural studies of lithium fluorophosphates glasses. Solid State Ionics 86:189–198

    Article  Google Scholar 

  39. Sreedhar B, Sairam M, Chattopadhyay DK, Kojima K (2005) Preparation and characterization of lithium fluorophosphates glasses doped with MoO3. Mater Chem Phys 92:492–498

    Article  Google Scholar 

  40. Ellis BL, Ramesh TN, Davis LJM, Govard GR, Nazar LF (2011) Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure. Chem Mater 23:5138–5148

    Article  Google Scholar 

  41. Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2008) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:849–853

    Google Scholar 

  42. Okada S, Ueno M, Uebou Y, Yamaki JI (2005) Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J Power Sourc 146:565–569

    Article  Google Scholar 

  43. Dutreilh M, Chevalier C, El-Ghozzi M, Avignant D, Montel JM (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphates Li2NiFPO4 with an ordered mixed anionic framework. J Solid State Chem 142:1–5

    Article  Google Scholar 

  44. Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2008) Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. J Power Sourc 184:820–825

    Google Scholar 

  45. Pan M, Lin X, Zhou Z (2011) Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant. J Solid State Electrochem 16:1615–1621

    Article  Google Scholar 

  46. Lu F, Zhou Y, Liu J, Pan Y (2011) Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim Acta 56:8833–8838

    Article  Google Scholar 

  47. Pan F, Wang W (2012) Synthesis and characterization of core–shell F-doped LiFePO4/C composite for lithium-ion batteries. J Solid State Electrochem 16:1423–1428

    Article  Google Scholar 

  48. Milovic M, Jugovic D, Cvjeticanin N, Uskokovic D, Milosevic AS, Popovic ZS, Vukajlovic FR (2013) Crystal structure analysis and first principle investigation of F doping in LiFePO4. J Power Sourc 241:80–89

    Article  Google Scholar 

  49. Barker J, Saidi MY, Swoyer JL (2001) Lithium metal fluorophosphates materials and preparation thereof. International Patent, WO01/084,655

    Google Scholar 

  50. Barker J, Saidi MY, and J.L. Swoyer JL (2002) Lithium metal fluorophosphates materials and preparation thereof US Patent, 6,388,568 B1, 14 May 2002

    Google Scholar 

  51. Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. Electrochem Solid State Lett 6:A1–A4

    Article  Google Scholar 

  52. Barker J, Saidi MY, Swoyer JL (2004) A Comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J Electrochem Soc 151:A1680–A1688

    Google Scholar 

  53. Barker J (2005) Lithium-containing phosphate active materials. US Patent, 6,890,686 B1, 10 May 2005

    Google Scholar 

  54. Barker J, Gover RKB, Burns P, Bryan AJ (2005) Hybrid-ion, a symmetrical lithium-ion cell based on lithium vanadium fluorophosphates LiVPO4F. Electrochem Solid State Lett 8:A285–A288

    Article  Google Scholar 

  55. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells. J Electrochem Soc 152:A1886–A1889

    Google Scholar 

  56. Barker J, Saidi MY, Swoyer JL (2005) Lithium metal fluorophosphates materials and preparation thereof. US Patent, 6,855,462 B2, 15 Feb 2005

    Google Scholar 

  57. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sourc 146:516–520

    Article  Google Scholar 

  58. Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J (2006) LiVPO4F: a new active material for safe lithium-ion batteries. Solid State Ionics 188:2635–2638

    Article  Google Scholar 

  59. Barker J, Saidi MY, Gover RKB, Burns P, Bryan A (2008) The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate LiVPO4F. J Power Sourc 184:928–931

    Google Scholar 

  60. Lindberg ML, Pecora WT (1955) Tavorite and barbosalite, two new phosphate minerals from Minas Gerais Brazil. Am Mineral 40:952–966

    Google Scholar 

  61. Roberts AC, Dunn PJ, Grice JD, Newbury DE, Dale E, Roberts WL (1988) The X-ray crystallography of tavorite from the tip top pegmatite, custer, South Dakota. Powder Diffr 3:93–95

    Article  Google Scholar 

  62. Groat LA, Raudseep M, Hawthorne FC, Ercit TS, Sherriff BL, Hartman JS (1990) The amblygonite-montebrasite series: characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy. Am Mineral 85:992–1008

    Google Scholar 

  63. Pizarro-Sanz JL, Dance JM, Villeneuve G, Arriortuz-Marcaida ML (1994) The natural and synthetic tavorite minerals: crystal chemistry and magnetic properties. Mater Lett 18:328–330

    Article  Google Scholar 

  64. Davis LJM, Ellis BL, Ramesh TN, Nazar LF, Bain AD, Govard GR (2011) 6Li 1D EXSY NMR spectroscopy: a new tool for studying lithium dynamics in paramagnetic materials applied to monoclinic Li2VPO4F. J Phys Chem C 115:22603–22608

    Article  Google Scholar 

  65. Plashnitsa LS, Kobayashi E, Okada S, Yamaki JI (2011) Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte. Electrochim Acta 56:1344–1351

    Article  Google Scholar 

  66. Zhou F, Zhao X, Dahn JR (2011) Reactivity of charged LiVPO4F with 1 M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochem Commun 11:589–591

    Article  Google Scholar 

  67. Ma R, Shao L, Wu K, Shui M, Wang D, Long N, Ren Y, Shu J (2014) Effects of oxidation on structure and performance of LiVPO4F as cathode material for lithium-ion batteries. J Power Sourc 248:884–885

    Google Scholar 

  68. Davis LJ, Cahill LS, Nazar LF, Goward GR (2010) Studies of ion mobility in lithium vanadium fluorophosphates using multinuclear solid state NMR. ECS Meeting Abstracts, MA-2010-01, p 626

    Google Scholar 

  69. Prabu M, Reddy MV, Selvasekarapandian S, Subba Rao GV, Chowdari BVR (2012) Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode. Electrochim Acta 85:582–588

    Article  Google Scholar 

  70. Zheng JC, Zhang B, Yang ZH (2012) Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing. J Power Sourc 202:380–383

    Article  Google Scholar 

  71. Wang JX, Wang ZX, Shen L, Li XH, Guo HJ, Tang WJ, Zhu ZG (2013) Synthesis and performance of LiVPO4F/C-based cathode material for lithium ion battery. Trans Nonferrous Met Soc China 23:1818–1822

    Google Scholar 

  72. Zhang QM, Shi ZC, Li YX, Gao D, Chen GH, Yang Y (2011) Recent advances in fluorophosphate and orthosilicate cathode materials for lithium ion batteries. Acta Phys Chim Sin 28:268–284

    Google Scholar 

  73. Reddy MV, Subba-Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode lithium vanadium fluorophosphates. J Power Sourc 195:5868–5884

    Article  Google Scholar 

  74. Yu J, Rosso KM, Zhang JG, Liu J (2011) Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries. J Mater Chem 21:12054–12058

    Article  Google Scholar 

  75. Khasanova NR, Drozhzhin OA, Storozhilova DA, Delmas C, Antipov EV (2012) New form of Li2FePO4F as cathode material for Li-ion batteries. Chem Mater 24:4281–4283

    Article  Google Scholar 

  76. Badi SP, Ramesh TN, Ellis B, Lee KT, Nazar LF (2009) Effect of substitution and solid solution behavior in lithium metal polyanion materials for Li-ion battery cathodes. ECS Meeting Abstracts, MA2009-02, p 398

    Google Scholar 

  77. Okada S, Ueno M, Uebou Y, Yamaki JI (2004) Electrochemical properties of a new lithium cobalt fluorophosphate Li2[CoF(PO4)]. IMLB-12 Abstracts, p 301

    Google Scholar 

  78. Nagahama M, Hasegawa N, Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 158:A848–A852

    Google Scholar 

  79. Khasanova NR, Gavrilov AN, Antipov EV, Bramnik KG, Hibst H (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sourc 196:355–360

    Article  Google Scholar 

  80. Wu X, Gong Z, Tan S, Yang Y (2012) Sol-gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. J Power Sourc 220:122–129

    Article  Google Scholar 

  81. Kosova NV, Devyatkina ET, Slobodyuk AB (2012) In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling. Investigation of its local structure and electrochemical properties. Solid State Ionics 225:580–584

    Article  Google Scholar 

  82. Karthikeyan K, Amaresh S, Kim KJ, Kim SH, Chung KY, Cho BW, Lee YS (2013) A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode. Nanoscale 5:5958–5964

    Article  Google Scholar 

  83. Amaresh S, Karthikeyan K, Kim KJ, Kim MC, Chung KY, Cho BW, Lee YS (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sourc 244:395–402

    Article  Google Scholar 

  84. Wang D, Xiao J, Xu W, Nie Z, Wang C, Graff G, Zhang JG (2011) Preparation and electrochemical investigation of Li2CoPO4F cathode material for Li-ion batteries. J Power Sourc 196:2241–2245

    Article  Google Scholar 

  85. Dumont-Botto E, Bourbon C, Patoux S, Rozier P, Dolle M (2011) Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J Power Sourc 196:2284–2288

    Google Scholar 

  86. Ben-Yahia H, Shikano M, Koike S, Sakaebe H, Tabuchi M, Kobayashi H (2013) New fluorophosphate Li2-xNaxFe[PO4]F as cathode material for lithium ion battery. J Power Sourc 244:88–93

    Google Scholar 

  87. Gover RKB, Bryan A, Burns P, Barker J (2006) The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 188:1495–1500

    Article  Google Scholar 

  88. Barker J, Gover RKB, Burns P, Bryan AJ (2008) Li4/3Ti5/3O4//Na3V2(PO4)2F3: an example of a hybrid-ion cell using a non-graphitic anode. J Electrochem Soc 154:A882–A888

    Article  Google Scholar 

  89. Park YU, Seo DH, Kim B, Hong KP, Kim H, Lee S, Shakoor RA, Miyasaka K, Tarascon JM, Kang K (2012) Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Sci Rep 2:804–811

    Google Scholar 

  90. Sauvage F, Quarez E, Tarascon JM, Baudrin E (2006) Crystal structure and electrochemical properties vs. Na+ of sodium fluorophosphates Na1.5VPO5F0.5. Solid State Sci 8:1215–1221

    Article  Google Scholar 

  91. Yin SC, Edwards R, Taylor N, Herle PS, Nazar LF (2006) Dimensional reduction: synthesis and structure of layered Li5 M(PO4)2F2 (M = V, Cr). Chem Mater 18:1845–1852

    Google Scholar 

  92. Makimura Y, Cahill LS, Iriyama Y, Goward GR, Nazar LF (2008) Layered lithium vanadium fluorophosphate, Li5V(PO4)2F2: A 4 V class positive electrode material for lithium-ion batteries. Chem Mater 20:4240–4248

    Article  Google Scholar 

  93. Sebastian L, Gopalakrishnan J, Piffard Y (2002) Synthesis crystal structure and lithium ion conductivity of LiMgFSO4. J Mater Chem 12:384–388

    Article  Google Scholar 

  94. Ati M, Sougrati MT, Recham N, Barpanda P, Leriche JB, Courty M, Armand M, Jumas JC, Tarascon JM (2010) Fluorosulphate positive electrodes for Li-ion batteries made via a solid-state dry process. J Electrochem Soc 158:A1008–A1015

    Google Scholar 

  95. Ati A, Walker WT, Djellab K, Armand M, Recham N, Tarascon JM (2010) Fluorosulfate positive electrode materials made with polymers as reacting media. Electrochem Solid State Lett 13:A150–A153

    Article  Google Scholar 

  96. Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2010) LiZnSO4F made in an ionic liquid: a new ceramic electrolyte composite for solid-state Li-batteries. Angew Chem Int Ed 50:2526–2531

    Article  Google Scholar 

  97. Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Structural, transport and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg Chem 49:8401–8413

    Article  Google Scholar 

  98. Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 49:8838–8842

    Article  Google Scholar 

  99. Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem 122:8920–8924

    Article  Google Scholar 

  100. Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668

    Article  Google Scholar 

  101. Frayret C, Villesuzanne A, Spaldin N, Bousquet E, Chotard JN, Recham N, Tarascon JM (2010) LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. Phys Chem Chem Phys 12:15512–15522

    Article  Google Scholar 

  102. Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM (2011) A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 10:882–889

    Article  Google Scholar 

  103. Ati M, Melot BC, Rousse G, Chotard JN, Barpanda P, Tarascon JM (2011) Structural and electrochemical diversity in LiFe1-δZnδSO4F solid solution: a Fe-based 3.9 V positive-electrode material. Angew Chem Int Ed 50:10584–10588

    Article  Google Scholar 

  104. Ramzan M, Lebegue S, Kang TW, Ahuja R (2011) Hybrid density functional calculations and molecular dynamics study of lithium fluorosulphate, a cathode material for lithium-ion batteries. J Phys Chem C 115:2600–2603

    Article  Google Scholar 

  105. Liu L, Zhang B, Huang XJ (2011) A 3.9 V polyanion-type cathode material for Li-ion batteries. Prog Nat Sci Mater Int 21:211–215

    Article  Google Scholar 

  106. Tripath R, Gardiner GR, Islam MS, Nazar LF (2011) Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem Mater 23:2284–2288

    Google Scholar 

  107. Ati M, Melot BC, Chotard JN, Rousse G, Reynaud M, Tarascon JM (2011) Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure. Electrochem Commun 13:1280–1283

    Article  Google Scholar 

  108. Melot BC, Rousse G, Chotard JN, Ati M, Rodríguez-Carvajal J, Kemei MC, Tarascon JM (2011) Magnetic structure and properties of the Li-ion battery materials FeSO4F and LiFeSO4F. Chem Mater 23:2922–2930

    Article  Google Scholar 

  109. Tripathi R, Popov G, Ellis BL, Huq A, Nazar LF (2012) Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering. Energ Environ Sci 5:6238–6246

    Article  Google Scholar 

  110. Ati M, Sathiya M, Boulineau S, Reynaud M, Abakumov A, Rousse G, Melot B, Van Tendeloo G, Tarascon JM (2012) Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. J Am Chem Soc 134:18380–18388

    Article  Google Scholar 

  111. Ati M, Sougrati MT, Rousse G, Recham N, Doublet ML, Jumas JC, Tarascon JM (2012) Single-step synthesis of FeSO4F1-yOHy (0 < y < 1) positive electrodes for Li-based batteries. Chem Mater 24:1482–1485

    Article  Google Scholar 

  112. Recham N, Rousse G, Sougrati MT, Chotard JN, Frayret C, Mariyappan S, Melot BC, Jumas JC, Tarascon JM (2012) Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem Mater 24:4363–4380

    Article  Google Scholar 

  113. Ben-Yahia M, Lemoigno F, Rousse G, Boucher F, Tarascon JM, Doublet ML (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energ Environ Sci 5:9584–9594

    Article  Google Scholar 

  114. Radha AV, Furman JD, Ati M, Melot BC, Tarascon JM, Navrotsky A (2012) Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1−x Mn x SO4F (0 ≤ x ≤ 1) polymorphs. J Mater Chem 22:2446–2452

    Article  Google Scholar 

  115. Barpanda B, Dedryvère R, Deschamps MP, Delacourt C, Reynaud M, Yamada A, Tarascon JM (2012) Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting. J Solid State Electrochem 16:1843–1851

    Article  Google Scholar 

  116. Tripathi R (2013) Novel high voltage electrodes for Li-ion batteries. PhD thesis, Univ. of Waterloo, Ontario, Canada

    Google Scholar 

  117. Sobkowiak A, Roberts MR, Younesi R, Ericsson T, Häggström L, Tai CW, Andersson AM, Edström K, Gustafsson T, Björefors F (2013) Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chem Mater 25:3020–3029

    Article  Google Scholar 

  118. Dong J, Yu X, Sun S, Liu L, Yang X, Huang X (2013) Triplite LiFeSO4F as cathode material for Li-ion batteries. J Power Sourc 244:816–820

    Google Scholar 

  119. Rousse G, Tarascon JM (2014) Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem Mater 26:394–406

    Article  Google Scholar 

  120. Tripathi R, Popov G, Sun X, Ryan DH, Nazar LF (2013) Ultra-rapid microwave synthesis of triplite LiFeSO4F. J Mater Chem A 1:2990–2994

    Article  Google Scholar 

  121. Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2-xMP2O8 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3938

    Article  Google Scholar 

  122. Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sourc 216:192–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Julien, C., Mauger, A., Vijh, A., Zaghib, K. (2016). Fluoro-polyanionic Compounds. In: Lithium Batteries. Springer, Cham. https://doi.org/10.1007/978-3-319-19108-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19108-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19107-2

  • Online ISBN: 978-3-319-19108-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics