Advertisement

On the Fuzzy Fractional Posynomial Geometric Programming Problems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 367)

Abstract

In this paper we consider the solution method for fuzzy fractional posynomial geometric programming (FFPGP) problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. The proposed approach relies on posing the FFPGP problem as a multi-objective posynomial geometric programming (MOPGP) problem by using simple transformation and condense technique. An illustrative example is included to demonstrate the correctness of the proposed solution algorithm.

Keywords

Trapezoidal fuzzy number Fractional programming Posynomial function Multi-objective posynomial geometric programming 

Notes

Acknowledgments

Thanks to the support by National Natural Science Foundation of China (No.70771030) and Project of Guangdong Provincial Foreign Students (Ph.D.) Scholarship.

References

  1. 1.
    Bellman, R.E., Zadeh, L.A.: Decision making in fuzzy environment. Manag. Sci. 17B, 141–164 (1970)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Boyd, S., Patil, D., Horowitz, M.: Digital circuit sizing via geometric programming. Oper. Res. 53(6), 899–932 (2005)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Boyd, S., Kim, S.-J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Cao, B.-Y.: Fuzzy Geometric Programming. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  6. 6.
    Chang, C.T.: On the posynomial fractional programming problems. Eur. J. Oper. Res. 143(1), 42–52 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Chang, C.T.: A goal programming approach for fuzzy multiobjective fractional programming problems. Int. J. Syst. Sci. 40(8), 867–874 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Naval Res. Logistics Quart. 9, 181–186 (1962)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–497 (1967)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)MATHGoogle Scholar
  11. 11.
    Hladik, M.: Generalized linear fractional programming under interval uncertainty. Eur. J. Oper. Res. 205, 42–46 (2010)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Jagannathan, R.: On some properties of programming problems in parametric form pertaining to fractional programming. Manage. Sci. 12, 609–615 (1966)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Kauffmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold, New York (1991)Google Scholar
  14. 14.
    Kaufmann, A., Gupta, M.M.: Fuzzy Mathemaical Models in Engineering and Managment Science. Elseiver Science Publishers, Amsterdam (1988)Google Scholar
  15. 15.
    Mehra, A., Chandra, S., Bector, C.R.: Acceptable optimality in linear fractional programming with fuzzy coefficients. Fuzzy Opt. Dec. Making 6, 5–16 (2007)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Neumann, J.V.: Uber Ein Es Gleichungs System and Eine Verallgemeinerung Des Brouwerschen Fixpuntsatzes. Ergebnisse Eines Mathematicschen 8, 245–267 (1937)Google Scholar
  17. 17.
    Ojha, A.K., Biswal, K.K.: Multiobjective geometric programming problem with \(\epsilon \)-constraint method. Appl. Math. Model. 29 (2013). doi: 10.1016/j.apm.2013.07.003
  18. 18.
    Saad, O.M.: On solving single-objective fuzzy integer linear fractional programs. Appl. Math. Inf. Sci. 4(3), 447–457 (2010)MathSciNetGoogle Scholar
  19. 19.
    Saad, O.M., Biltagy, M.Sh., Farag, T.B.: An algorithm for multiobjective integer nonlinear fractional programming under fuzziness. Ann. Fuzzy Math. Inf. 1, 207–220 (2011)Google Scholar
  20. 20.
    Sakawa, M., Nishizaki, I., Uemura, Y.: Interactive fuzzy programming for two level linear and linear fractional production and assignment problems: a case study. Eur. J. Oper. Res. 135, 142–157 (2001)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Zimmermann, H.J.: Fuzzy Set Theory and its Applications, 3rd edn. Kluwer Academic, Norwell (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of GuangdongHigher Education Institutes, Guangzhou UniversityGuangdongChina
  2. 2.Guangzhou UniversityGuangdongChina

Personalised recommendations