Skip to main content

Extended General Variational Inequalities and General Wiener–Hopf Equations

  • Conference paper
  • First Online:
Fuzzy Systems & Operations Research and Management

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 367))

  • 969 Accesses

Abstract

In this paper, we show the extended general variational inequality problems are equivalent to solving the general Wiener–Hopf equations. By using the equivalence, we establish a general iterative algorithm for finding the solution of extended general variational inequalities. We also discuss the convergence criteria for the algorithm. Our results extend and improve the corresponding results announced by many others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Noor, M.A., Wang, Y.J., Xiu, N.: Some new projection methods for variational inequalities. Appl. Math. Comput. 137, 423–435 (2003)

    Google Scholar 

  2. Noor, M.A.: Wiener–hopf equations and variational inequalities, J. Optim.Theory Appl. 79, 197–206 (1993)

    Google Scholar 

  3. Noor, M.A.: General variational inequalities. Appl. Math. Lett. 1, 119–122 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Noor, M.A.: Sensitivity analysis for quasi variational inequalities. J. Optim. Theory Appl. 95, 399–407 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Noor, M.A.: Wiener–hopf equations technique for quasimonotone variational inequalities. J. Optim. Theory Appl. 103, 705–714 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Noor, M.A.: General variational inequalities and nonexpansive mappings. J. Math. Anal. Appl. 331, 810–822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Noor, M.A.: Differentiable nonconvex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Noor, M.A.: Extended general variational inequalities. Appl. Math. Lett. 22, 182–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, X., Noor M.A.: General Wiener-Hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces. Appl. Math. Comput. 201, 716–722 (2008)

    Google Scholar 

  11. Shi, P.: Equivalence of variational inequalities with Wiener–Hopf equations. Proc. Am. Math. Soc. 111, 339–346 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Thanks to the support by Nature Science Foundation of Hebei Province under Grant No. F2014501046 and National Nature Science Foundation of China under Grant No. 61202259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, XM., Zhang, YY., Li, N., Fan, XY. (2016). Extended General Variational Inequalities and General Wiener–Hopf Equations. In: Cao, BY., Liu, ZL., Zhong, YB., Mi, HH. (eds) Fuzzy Systems & Operations Research and Management. Advances in Intelligent Systems and Computing, vol 367. Springer, Cham. https://doi.org/10.1007/978-3-319-19105-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19105-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19104-1

  • Online ISBN: 978-3-319-19105-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics