A Fixed-Length Source Coding Theorem on Quasi-Probability Space

  • Yang Yang
  • Lin-qing Gao
  • Chao Wang
  • Ming-hu Ha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 367)


The existing source coding theorems are established on probability meas-ure space or Sugeno measure space. It is difficult to deal with the source coding problems on quasi-probability space which is an extension of probability measure space and Sugeno measure space. In order to overcome the limitation, fixed-length source coding problems on quasi-probability space are discussed. Based on the definition and properties of information entropy on quasi-probability space, an asymptotic equipartition property of discrete memoryless information source on quasi-probability space is proved. Then, a fixed-length source coding theorem for discrete memoryless information source on quasi-probability space is provided.


Fixed-length source coding theorem Sugeno measure Quasi-probability space Information entropy 



Thanks to the support by the National Natural Science Foundation of China (No. 60773062 and No.61073121), the Natural Science Foundation of Hebei Province of China (No.F2012402037 and No.A2012201033).


  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3&4), 379–423, 623–656 (1948)Google Scholar
  2. 2.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)MATHGoogle Scholar
  3. 3.
    Noll, P.: Digital audio coding for visual communications. Proc. IEEE 83(6), 925–943 (1995)CrossRefGoogle Scholar
  4. 4.
    Atallah, M., Genin, Y., Szpankowski, W.: Pattern matching image compression: algorithmic and empirical results. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 614–627 (1999)CrossRefGoogle Scholar
  5. 5.
    Girod, B., Margot, A., Rane, S., Rebollo-Monedero, D.: Distributed video coding. Proc. IEEE 93(1), 71–83 (2005)CrossRefGoogle Scholar
  6. 6.
    Schonberg, D., Draper, S.C., Yeo, C.H., Ramchandran, K.: Toward compression of encrypted images and video sequences. IEEE Trans. Inf. Forensic. Secur. 3(4), 749–762 (2008)CrossRefGoogle Scholar
  7. 7.
    Klinc, D., Hazay, C., Jagmohan, A., Krawczyk, H., Rabin, T.: On compression of data encrypted with block ciphers. IEEE Trans. Inf. Theory 58(11), 6989–7001 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Toto-Zarasoa, V., Roumy, A., Guillemot, C.: Source modeling for distributed video coding. IEEE Trans. Circ. Syst. Video Technol. 22(2), 174–187 (2012)CrossRefGoogle Scholar
  9. 9.
    Bercher, J.F.: Source coding with escort distributions and Rényi entropy bounds. Phys. Lett. A 373, 3235–3238 (2009)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Ha, M.H., Feng, Z.F., Song, S.J., Gao, L.Q.: The key theorem and the bounds on the rate of uniform convergence of statistical learning theory on quasi-probability spaces. Chin. J. Comput. 31(3), 476–485 (2008)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Choquet, G.: Theory of capacities. Ann. de l’institut Fourier 5, 131–295 (1954)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo institute of Technology, Tokyo (1974)Google Scholar
  13. 13.
    Wang, Z.Y., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)CrossRefMATHGoogle Scholar
  14. 14.
    Wang, Z.Y.: Une classe de mesures floues–les quasi-mesures. BUSEFAL 6, 28–37 (1981)Google Scholar
  15. 15.
    Aumann, R.J., Shapley, L.S.: Values of Non-atomic Games. Princeton University Press, Princeton (1974)MATHGoogle Scholar
  16. 16.
    Pap, E.: Null-additive Set Functions. Kluwer, Boston (1995)MATHGoogle Scholar
  17. 17.
    Wang, Z.Y., Klir, G.J.: Generalized Measure Theory. Springer, New York (2008)Google Scholar
  18. 18.
    Ha, M.H., Yang, L.Z., Wu, C.X.: Introduction to Generalized Fuzzy Set-Valued Measure. Science Press, Beijing (2009)Google Scholar
  19. 19.
    Klir, G.J.: Generalized information theory. Fuzzy Sets Syst. 40(1), 127–142 (1991)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Sgarro, A.: Possibilistic information theory: a coding-theoretic approach. Fuzzy Sets Syst. 132(1), 11–32 (2002)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Sgarro, A.: An axiomatic derivation of the coding-theoretic possibilistic entropy. Fuzzy Sets Syst. 143(3), 335–353 (2004)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Zhang, J.L., Yang, Q.: Information entropy of discrete information source with \(g_\lambda \) distribution and their application. Fuzzy Syst. Math. 23(1), 52–58 (2009)MATHGoogle Scholar
  23. 23.
    Ha, M.H., Wang, C., Zhang, Z.M., Tian, D.Z.: Uncertainty Statistical Learning Theory. Science Press, Beijing (2010)Google Scholar
  24. 24.
    Yang, Y., Wang, C., Ha, M.H.: Information entropy of discrete quasi-random variables and its properties. In: The 5th International Conference on Fuzzy Information and Engineering, Cheng Du, China, pp. 165–172 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yang Yang
    • 1
  • Lin-qing Gao
    • 1
  • Chao Wang
    • 2
  • Ming-hu Ha
    • 2
  1. 1.Department of ManagementHebei UniversityBaodingPeople’s Republic of China
  2. 2.School of Economics and ManagementHebei University of EngineeringHandanPeople’s Republic of China

Personalised recommendations