Generalized Fuzzy Imaginary Ideals of Complemented Semirings

  • Zu-hua Liao
  • Chan Zhu
  • Xiao-tang Luo
  • Shuang Hu
  • Wei-long Liu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 367)


Our aim in this paper is to introduce and study the new type of fuzzy ideals of a complemented semiring called generalized fuzzy imaginary right (resp.left) ideals and the direct products of them. The equivalence relation of them is given, besides, the fundamental properties of their intersection, union and level sets are discussed. Finally, we also investigated the properties of their homomorphic preimage.


(\(\in , \in \vee q_{(\lambda , \mu )}\))—fuzzy imaginary ideal generalized fuzzy imaginary ideal homomorphic preimage 



This work is supported by Program for Innovative Research Team of Jiangnan University (No:200902).


  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)Google Scholar
  2. 2.
    Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35(3), 512–517 (1971)Google Scholar
  3. 3.
    Liu, W.J.: The character of fuzzy ideals and field. Fuzzy Math. 1(1), 101–101 (1981)Google Scholar
  4. 4.
    Ma, H.C.: About imaginary ideals of rings. J. Xuchang Colledge. 9(1), 8–10 (1990)Google Scholar
  5. 5.
    Ma, H.C., Chen, F.Z., Wu, Y.Z.: About pseudo ideals and imaginary ideals of rings. J. Harbin Normal Univ. (Nat. Sci.) 8(1), 23–26 (1992)Google Scholar
  6. 6.
    Bhakat, S.K., Das, P.: On the definition of a fuzzy subgroup. Fuzzy Sets Syst. 51(2), 235–241 (1992)Google Scholar
  7. 7.
    Liao, Z.H., Chen, M.: \(( \in , \in \vee {q_{(\lambda ,\mu )}}) - \)fuzzy subsemigroups and \(( \in , \in \vee {q_{(\lambda ,\mu )}}) - \) fuzzy completely regular subsemigroups. J. Jiangnan Univ. (Nat. Sci.) 8(2), 242–244 (2009)Google Scholar
  8. 8.
    Liao, Z.H., Hu, M.H., Chen, M., et al.: Gerneralized fuzzy interior ideals in semigroups. In: Third International Jiont Conference on Computational Science and Optimization, pp. 197–200 (2010)Google Scholar
  9. 9.
    Vandiver, H.S.: On some simple types of semirings. Am. Math. Mon. 46(1), 22–26 (1939)Google Scholar
  10. 10.
    Glazek, K.: A Guide to the Literature on Semirings and Their Applications in Mathematics and Information Sciences. Kluwer, Dirdrecht (2002)Google Scholar
  11. 11.
    Golan, J.S.: Semirings and Affine Equations over Them: Theory and Applications. Kluwer, Dordrecht (2003)Google Scholar
  12. 12.
    Liu, W.J.: Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. 8(2), 133–139 (1982)Google Scholar
  13. 13.
    Mukherjee, T.K., Sen, M.K.: On fuzzy ideals of a ring. Fuzzy Sets Syst. 21(1), 99–104 (1987)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Mukherjee, T.K., Sen, M.K.: Prime fuzzy ideals in rings. Fuzzy Sets Syst. 32(3), 337–341 (1989)Google Scholar
  15. 15.
    Feng, J.W., Zhan, C.S.: Complemented semirings congruence. Fuzzy Syst. Math. 24(6), 61–65 (2010)Google Scholar
  16. 16.
    Ming, P.P., Ming, L.Y.: Fuzzy topology: neighbourhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 76(2), 571–599 (1980)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Zhu, C., Liao, Z.H., Luo, X.T., et al.: Fuzzy complemented sumirings. Fuzzy Syst. Math. 27(5), 47–54 (2013)Google Scholar
  18. 18.
    Liao, Z.H., Gu, H.: Fuzzy normal subgroup. Fuzzy Syst. Math. 20(5), 340–343 (2006)Google Scholar
  19. 19.
    Yao, B.X.: Fuzzy Theory on Groups and Rings, pp. 1–125. Science Press, Beijing (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zu-hua Liao
    • 1
    • 2
  • Chan Zhu
    • 1
    • 2
  • Xiao-tang Luo
    • 1
    • 2
  • Shuang Hu
    • 1
    • 2
  • Wei-long Liu
    • 1
  1. 1.School of ScienceJiangnan UniversityWuxiChina
  2. 2.Institute of Intelligent Systems and Network ComputingEngineering of Internet of ThingsWuxiChina

Personalised recommendations