Skip to main content

Asymptotic Dynamics of Stochastic Lattice Differential Equations: A Review

  • Chapter
  • First Online:
Book cover Continuous and Distributed Systems II

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 30))

Abstract

This is an expository article on asymptotic dynamics of stochastic lattice differential equations. In particular, we investigate the long-term behavior of stochastic lattice differential equations, by using the concept of global random pullback attractor in the framework of random dynamical systems. General results on the existence of global compact random attractors are first provided for general random dynamical systems in weighted spaces of infinite sequences. They are then used to study the existence of global pullback random attractors for various types of stochastic lattice dynamical systems with white noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A random set \(D(\omega )\) is said to be tempered with respect to \((\theta _t)_{t \in \mathbb {R}}\) if for a.e. \(\omega \in {\varOmega }\), \(\lim _{t \rightarrow \infty }e^{-\gamma t} \sup _{x \in D(\theta _{-t} \omega )} \Vert x\Vert _X = 0\) for all \(\gamma >0\). A random variable \(\omega \mapsto r(\omega )\in \mathbb {R}\) is said to be tempered with respect to \((\theta _t)_{t\in \mathbb {R}}\) if for a.e. \(\omega \in {\varOmega }\), \( \lim \limits _{t\rightarrow +\infty }e^{-\gamma t}\sup \limits _{t\in \mathbb {R}}|r(\theta _{-t}\omega )|=0\) for all \(\gamma >0\).

References

  1. Abdallah, A.Y.: Uniform exponential attractors for first order non-autonomous lattice dynamical systems. J. Differ. Equ. 251(6), 1489–1504 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Afraimovich, V.S., Nekorkin, V.I.: Chaos of traveling waves in a discrete chain of diffusively coupled maps. Int. J. Bifur. Chaos 4, 631–637 (2004)

    Article  MathSciNet  Google Scholar 

  3. Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  4. Bates, P.W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6, 1–21 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifur. Chaos 11, 143–153 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54(3–4), 181–190 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bell, J., Cosner, C.: Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons. Q. Appl. Math. 42(1), 1–14 (1984)

    MATH  MathSciNet  Google Scholar 

  8. Cahn, J.W.: Theory of Crystal Growth and Interface Motion in Crystalline Materials, pp. 51–52. Wiley, New York (2013)

    Google Scholar 

  9. Caraballo, T., Lu, K.: Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China 3(3), 317–335 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caraballo, T., Morillas, F., Valero, J.: Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity. J. Differ. Equ. Appl. 17(2), 161–184 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities. J. Differ. Equ. 253(2), 667–693 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chow, S.-N., Mallet-Paret, J.: Pattern formulation and spatial chaos in lattice dynamical systems. I. IEEE Trans. Circuits Syst. 42, 746–751 (1995)

    Article  MathSciNet  Google Scholar 

  13. Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149, 248–291 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chow, S.-N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Random Comput. Dyn. 4, 109–178 (1996)

    MATH  Google Scholar 

  15. Chow, S.-N., Shen, W.: Dynamics in a discrete Nagumo equation: spatial topological chaos. SIAM J. Appl. Math. 55, 1764–1781 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(10), 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  17. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9(2), 307–341 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365–393 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction-diffusion systems. Phys. D 67(1–3), 237–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fan, X., Yang, H.: Exponential attractor and its fractal dimension for a second order lattice dynamical system. J. Math. Anal. Appl. 367(2), 350–359 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flandol, F.I., Schmalfuss, B.: Random attractors for the 3d stochastic navier-stokes equation with multiplicative white noise. Stoch. Stoch. Rep. 59, 21–45 (1996)

    Article  Google Scholar 

  23. Han, X.: Exponential attractors for lattice dynamical systems in weighted spaces. Discret. Contin. Dyn. Syst. 31(2), 445–467 (2011)

    Article  MATH  Google Scholar 

  24. Han, X.: Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise. J. Math. Anal. Appl. 376(2), 481–493 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Han, X.: Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces. Stoch. Dyn. 12(3), 1150024 (2012)

    Article  MathSciNet  Google Scholar 

  26. Han, X.: Asymptotic behaviors for second order stochastic lattice dynamical systems on \(\mathbb{Z}^k\) in weighted spaces. J. Math. Anal. Appl. 397(1), 242–254 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Han, X., Shen, W., Zhou, S.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250(3), 1235–1266 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huang, J.: The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises. Phys. D 233(2), 83–94 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Imkeller, P., Schmalfuss, B.: The conjugacy of stochastic and random differential equations and the existence of global attractors. J. Dynam. Differ. Equ. 13(2), 215–249 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kapval, R.: Discrete models for chemically reacting systems. J. Math. Chem. 6, 113–163 (1991)

    Article  MathSciNet  Google Scholar 

  31. Keener, J.P.: Propagation and its failure in the discrete Nagumo equation. In Ordinary and partial differential equations (Dundee, 1986), vol. 157 of Pitman Research Notes in Mathematics, pp. 95–112. Longman Sci. Tech., Harlow (1987)

    Google Scholar 

  32. Keener, J.P.: The effects of discrete gap junction coupling on propagation in myocardium. J. Theor. Biol. 148, 49–82 (1991)

    Article  Google Scholar 

  33. Kloeden, P.E., Rasmussen, M.: Nonautonomous dynamical systems. Mathematical Surveys and Monographs, vol. 176. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  34. Laplante, J.P., Erneux, T.: Propagating failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96, 4931–4934 (1992)

    Article  Google Scholar 

  35. Lv, Y., Sun, J.H.: Dynamical behavior for stochastic lattice systems. Chaos Solitons Fractals 27, 1080–1090 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11(1), 49–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rashevsky, N.: Mathematical Biophysics: Physico-mathematical Foundations of Biology, vol. 2, 3rd revised edn. Dover Publications Inc., New York (1960)

    Google Scholar 

  38. Ruelle, D.: Characteristic exponents for a viscous fluid subjected to time dependent forces. Commun. Math. Phys. 93(3), 285–300 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Scott, A.C.: Analysis of a myelinated nerve model. Bull. Math. Biophys. 26, 247–254 (1964)

    Article  Google Scholar 

  40. Shen, W.: Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices. SIAM J. Appl. Math. 56, 1379–1399 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Van Vleck, E., Wang, B.: Attractors for lattice FitzHugh-Nagumo systems. Phys. D 212(3–4), 317–336 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang, B.: Dynamics of systems on infinite lattices. J. Differ. Equ. 221(1), 224–245 (2006)

    Article  MATH  Google Scholar 

  43. Wang, B.: Asymptotic behavior of non-autonomous lattice systems. J. Math. Anal. Appl. 331(1), 121–136 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, X., Li, X., Xu, D.: Random attractors for second-order stochastic lattice dynamical systems. Nonlinear Anal. Theory Methods Appl. 72(1), 483–494 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhao, C., Zhou, S.: Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J. Math. Anal. Appl. 354(1), 78–95 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhao, X., Zhou, S.: Kernel sections for processes and nonautonomous lattice systems. Discret. Contin. Dyn. Syst. Ser. B 9(3–4), 763–785 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhou, S.: Attractors for first order dissipative lattice dynamical systems. Phys. D: Nonlinear Phenom. 178(12), 51–61 (2003)

    Article  MATH  Google Scholar 

  48. Zhou, S.: Attractors and approximations for lattice dynamical systems. J. Differ. Equ. 200(2), 342–368 (2004)

    Article  MATH  Google Scholar 

  49. Zhou, S., Han, X.: Pullback exponential attractors for non-autonomous lattice systems. J. Dyn. Differ. Equ. 24(3), 601–631 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by FEDER and the Spanish Ministerio de Economía y Competitividad project MTM2011-22411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Han, X. (2015). Asymptotic Dynamics of Stochastic Lattice Differential Equations: A Review. In: Sadovnichiy, V., Zgurovsky, M. (eds) Continuous and Distributed Systems II. Studies in Systems, Decision and Control, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-19075-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19075-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19074-7

  • Online ISBN: 978-3-319-19075-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics