Beretta, E., Takeuchi, Y.: Qualitative properties of chemostat equations with time delays: boundedness, local and global asymptotic stability. Differ. Equ. Dyn. Syst. 2, 19–40 (1994)
MATH
MathSciNet
Google Scholar
Beretta, E., Takeuchi, Y.: Qualitative properties of chemostat equations with time delays II. Differ. Equ. Dyn. Syst. 2, 263–288 (1994)
MATH
MathSciNet
Google Scholar
Ballyk, M., Jones, D., Smith, H.: The biofilm model of Freter: a review. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology, pp. 265–302. Springer, Berlin (2008)
CrossRef
Google Scholar
Jones, D., Kojouharov, H., Le, D., Smith, H.L.: The Freter model: a simple model of biofilm formation. J. Math. Biol. 47, 137–152 (2003)
MATH
MathSciNet
CrossRef
Google Scholar
Pilyugin, S.S., Waltman, P.: The simple chemostat with wall growth. SIAM J. Appl. Math. 59, 1552–1572 (1999)
MATH
MathSciNet
CrossRef
Google Scholar
Sree Hari Rao, V., Raja Sekhara Rao, P.: Dynamic Models and Control of Biological Systems. Springer, Heidelberg (2009)
MATH
Google Scholar
Topiwala, H., Hamer, G.: Effect of wall growth in steady state continuous culture. Biotech. Bioeng. 13, 919–922 (1971)
CrossRef
Google Scholar
Butler, G.J., Hsu, S.B., Waltman, P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–449 (1985)
MATH
MathSciNet
CrossRef
Google Scholar
Caraballo, T., Han, X., Kloeden, P.E.: Chemostats with time-dependent inputs and wall growth. Appl. Math. Inf. Sci. (to appear)
Google Scholar
Caraballo, T., Han, X., Kloeden, P. E.: Chemostats with random inputs and wall growth. Math. Methods Appl. Sci. (to appear). doi:10.1002/mma.3437
Caraballo, T., Han X., Kloeden, P. E.: Non-autonomous chemostats with variable delays. SIAM J. Math. Anal. (to appear). doi:10.1137/14099930X
Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. American Mathematical Society, Providence (2011)
MATH
CrossRef
Google Scholar
Caraballo, T., Langa, J.A., Robinson, J.C.: Attractors for differential equations with variable delays. J. Math. Anal. Appl. 260(2), 421–438 (2001)
MATH
MathSciNet
CrossRef
Google Scholar
Kloeden, P.E., Lorenz, T.: Pullback incremental stability. Nonauton. Random Dyn. Sys. 53–60 (2013). doi:10.2478/msds-2013-0004
Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)
MATH
CrossRef
Google Scholar
Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)
MATH
CrossRef
Google Scholar
Asai, Y., Kloeden, P.E.: Numerical schemes for random ODEs via stochastic differential equations. Commun. Appl. Anal. 17(3 and 4), 521–528 (2013)
MathSciNet
Google Scholar
Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)
MATH
CrossRef
Google Scholar
Caraballo, T., Kloeden, P.E., Real, J.: Discretization of asymptotically stable stationary solutions of delay differential equations with a random stationary delay. J. Dyn. Differ. Equ. 18(4), 863–880 (2006)
MATH
MathSciNet
CrossRef
Google Scholar