Abstract
Chemostat models have a long history in the biological sciences as well as in biomathematics. Hitherto most investigations have focused on autonomous systems, that is, with constant parameters, inputs, and outputs. In many realistic situations these quantities can vary in time, either deterministically (e.g., periodically) or randomly. They are then nonautonomous dynamical systems for which the usual concepts of autonomous systems do not apply or are too restrictive. The newly developing theory of nonautonomous dynamical systems provides the necessary concepts, in particular that of a nonautonomous pullback attractor. These will be used here to analyze the dynamical behavior of nonautonomous chemostat models with or without wall growth, time-dependent delays, variable inputs and outputs. The possibility of overyielding in nonautonomous chemostats will also be discussed.
Keywords
- Delay Differential Equation
- Random Dynamical System
- Random Attractor
- Wall Growth
- Pullback Attractor
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Beretta, E., Takeuchi, Y.: Qualitative properties of chemostat equations with time delays: boundedness, local and global asymptotic stability. Differ. Equ. Dyn. Syst. 2, 19–40 (1994)
Beretta, E., Takeuchi, Y.: Qualitative properties of chemostat equations with time delays II. Differ. Equ. Dyn. Syst. 2, 263–288 (1994)
Ballyk, M., Jones, D., Smith, H.: The biofilm model of Freter: a review. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology, pp. 265–302. Springer, Berlin (2008)
Jones, D., Kojouharov, H., Le, D., Smith, H.L.: The Freter model: a simple model of biofilm formation. J. Math. Biol. 47, 137–152 (2003)
Pilyugin, S.S., Waltman, P.: The simple chemostat with wall growth. SIAM J. Appl. Math. 59, 1552–1572 (1999)
Sree Hari Rao, V., Raja Sekhara Rao, P.: Dynamic Models and Control of Biological Systems. Springer, Heidelberg (2009)
Topiwala, H., Hamer, G.: Effect of wall growth in steady state continuous culture. Biotech. Bioeng. 13, 919–922 (1971)
Butler, G.J., Hsu, S.B., Waltman, P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–449 (1985)
Caraballo, T., Han, X., Kloeden, P.E.: Chemostats with time-dependent inputs and wall growth. Appl. Math. Inf. Sci. (to appear)
Caraballo, T., Han, X., Kloeden, P. E.: Chemostats with random inputs and wall growth. Math. Methods Appl. Sci. (to appear). doi:10.1002/mma.3437
Caraballo, T., Han X., Kloeden, P. E.: Non-autonomous chemostats with variable delays. SIAM J. Math. Anal. (to appear). doi:10.1137/14099930X
Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. American Mathematical Society, Providence (2011)
Caraballo, T., Langa, J.A., Robinson, J.C.: Attractors for differential equations with variable delays. J. Math. Anal. Appl. 260(2), 421–438 (2001)
Kloeden, P.E., Lorenz, T.: Pullback incremental stability. Nonauton. Random Dyn. Sys. 53–60 (2013). doi:10.2478/msds-2013-0004
Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)
Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)
Asai, Y., Kloeden, P.E.: Numerical schemes for random ODEs via stochastic differential equations. Commun. Appl. Anal. 17(3 and 4), 521–528 (2013)
Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)
Caraballo, T., Kloeden, P.E., Real, J.: Discretization of asymptotically stable stationary solutions of delay differential equations with a random stationary delay. J. Dyn. Differ. Equ. 18(4), 863–880 (2006)
Acknowledgments
This work has been partially supported by the Spanish Ministerio de Economía y Competitividad project MTM2011-22411 and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314 and Proyecto de Excelencia P12-FQM-1492.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Caraballo, T., Han, X., Kloeden, P.E., Rapaport, A. (2015). Dynamics of Nonautonomous Chemostat Models. In: Sadovnichiy, V., Zgurovsky, M. (eds) Continuous and Distributed Systems II. Studies in Systems, Decision and Control, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-19075-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-19075-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19074-7
Online ISBN: 978-3-319-19075-4
eBook Packages: EngineeringEngineering (R0)