Skip to main content

On the Relationships Between Sub Problems in the Hierarchical Optimization Framework

  • Conference paper
  • First Online:
Current Approaches in Applied Artificial Intelligence (IEA/AIE 2015)

Abstract

In many optimization problems there may exist multiple ways in which a particular hierarchical optimization problem can be modeled. In addition, the diversity of hierarchical optimization problems requires different types of multilevel relations between sub-problems. Thus, the approximate and accurate representations and solutions can be integrated. That is, to address the how partial solutions of sub-problems can be reintegrated to build a solution for the main problem. The nature of relations between components differs from one decomposition strategy to another. In this paper, we will investigate the possible links and relationships that may appear between sub-problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hertz, A., Lahrichi, N.: A patient assignment algorithm for home care services. Journal of the Operational Research Society 60, 481–495 (2009)

    Article  MATH  Google Scholar 

  2. Newell, A., Shaw, C., Simon, H.: The process of creative thinking. In: Gruber, H.E., Terrell, G., Wertheimer, M. (eds.) Contemporary Approaches to Creative Thinking, pp. 63–119. Atherton, New York (1993)

    Google Scholar 

  3. Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network congestion games. In: SODA, pp. 1133–1142 (2007)

    Google Scholar 

  4. Reyniers, D., Tapiero, C.: The Delivery and Control of Quality in Supplier-Producer Contracts. Management Science 41(10), 1581–1590 (1995)

    Article  MATH  Google Scholar 

  5. Korzhyk, D, Conitzer, V., Parr, R.: Complexity of computing optimal stackelberg strategies in security resource allocation games. In: The Procedings of the National Conference on Artificial Intelligence (AAAI), Atlanta, GA, USA pp. 805–810 (2002)

    Google Scholar 

  6. Bacchus, F., Yang, Q.: The expected value of hierarchical problem-solving. In: AAAI 1992 Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 369–374 (1992)

    Google Scholar 

  7. Kretinin, K., Egorov, I., Fedechkin, K.: Multi-level robust design optimization fan. In: Workshop CEAS, VrijeUniversiteit Brussels (VUB), Brussels, Belgium (2010)

    Google Scholar 

  8. Leitmann, G.: On general Stackelberg Strategies. Journal of optimization theory and applications 26(4), 637–643 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kim, H., Kumar, D., Chen, W., Papalambros, P.: Target feasibility achievement in enterprisedriven hierarchical multidisciplinary design. In: AIAA-2004-4546, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York (2004)

    Google Scholar 

  10. Jemai, J., Chaieb, M., Mellouli, K.: The home care scheduling problem: A modeling and solving issue. In: Proceedings of the 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO) (2013)

    Google Scholar 

  11. Sobieski, J., Hafka, R.: Interdisciplinary and multilevel optimum design. In: Mota Soares, C.A. (ed.) Computer Aided Optimal Design: Structural and Mechanical Systems NATO ASI Series. Springer, Berlin, Heidelberg Berlin (1987)

    Google Scholar 

  12. Michalek, J., Papalambros, P.: Weights, norms, and notation in analytical target cascading. Journal of Mechanical Design 127(3), 499–501 (2005)

    Article  Google Scholar 

  13. Bracken, J., McGill, J.: Mathematical programs with optimization problems in the constraints. Operations Research 21, 37–44 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. El-Beltagy, M., John Keane, J.: A comparison of various optimization algorithms on a multilevel problem. Engineering Applications of Artificial Intelligence 12(8), 639–654 (1999)

    Article  Google Scholar 

  15. Mesarovic, M., Takahara, Y., Macko, D.: Theory of Hierarchical Multilevel Systems. Academic Press, New York, USA (1970)

    MATH  Google Scholar 

  16. Michelena, N., Park, H., Papalambros, P.: Convergence properties of analytical target cascading. AIAA Journal 41(5), 897–905 (2003)

    Article  Google Scholar 

  17. Braun, R., Kroo, I.: Development and application of the collaborative optimization architecture in a multidisciplinary design environment multidisciplinary design optimization: State of the art. SIAM, 98–116 (1995)

    Google Scholar 

  18. Azarm, S., Li, W.-C.: Multi-level design optimization using global monotonicity analysis. Journal of Mechanical Design 111(2), 259–263 (1989)

    Google Scholar 

  19. Tosserams, S., Etman, L., Rooda, J.: An augmented Lagrangian relaxation for analytical target cascading using the alternating directions method of multipliers. Structural and Multidisciplinary Optimization 31(3), 176–189 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Paul Ramasubramanian, P., Kannan, A.: Intelligent Multi-Agent Based Multivariate Statistical Framework for Database Intrusion Prevention System. International Arab Journal of Information Technology 2(3), 239–247 (2005)

    Google Scholar 

  22. Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 192–201 (2010)

    Google Scholar 

  23. Korilis, Y., Lazar, A., Orda, A.: Achieving network optima using stackelberg routing strategies. IEEE/ACM Trans. Netw. 5(1), 161–173 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marouene Chaieb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chaieb, M., Jemai, J., Mellouli, K. (2015). On the Relationships Between Sub Problems in the Hierarchical Optimization Framework. In: Ali, M., Kwon, Y., Lee, CH., Kim, J., Kim, Y. (eds) Current Approaches in Applied Artificial Intelligence. IEA/AIE 2015. Lecture Notes in Computer Science(), vol 9101. Springer, Cham. https://doi.org/10.1007/978-3-319-19066-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19066-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19065-5

  • Online ISBN: 978-3-319-19066-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics