Integration of Disease Entries Across OMIM, Orphanet, and a Proprietary Knowledge Base

  • Maori Ito
  • Shin’ichi Nakagawa
  • Kenji Mizuguchi
  • Takashi Okumura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9101)

Abstract

Integration of disease databases benefits physicians searching for disease information. However, current algorithmic matching is not sufficiently powerful to automate the integration process. This paper reports our attempt to manually integrate disease entries spread across public disease databases, Online Mendelian Inheritance in Man and Orphanet, with a proprietary disease knowledge base. During the process, we identified that relations between synonyms require special handling, and a set of resolution rules are proposed. Situations encountered throughout the integration suggested that variations in the cross-references would facilitate future integration of distinct disease databases.

Keywords

Disease knowledge base Semantic integration Ontology alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41(5), 706–716 (2008)CrossRefGoogle Scholar
  2. 2.
    Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology 32, D267–D270 (2004)Google Scholar
  3. 3.
    Miličić Brandt, M., Rath, A., Devereau, A., Aymé, S.: Mapping orphanet terminology to UMLS. In: Peleg, M., Lavrač, N., Combi, C. (eds.) AIME 2011. LNCS, vol. 6747, pp. 194–203. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Chen, B., Dong, X., Jiao, D., Wang, H., Zhu, Q., Ding, Y., Wild, D.J.: Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC bioinformatics 11(1), 255 (2010)CrossRefGoogle Scholar
  5. 5.
    Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief survey. AI magazine 26(1), 83 (2005)Google Scholar
  6. 6.
    Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 18. Springer (2007)Google Scholar
  7. 7.
    INSERM SC11: Orphanet. http://www.orpha.net/
  8. 8.
    John Hopkins University: OMIM: Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/omim
  9. 9.
    Merabti, T., Joubert, M., Lecroq, T., Rath, A., Darmoni, S.: Mapping biomedical terminologies using natural language processing tools and UMLS: mapping the Orphanet thesaurus to the MeSH. BioMedical Engineering and Research 31(4), 221–225 (2010)Google Scholar
  10. 10.
    Morita, M., Igarashi, Y., Ito, M., Chen, Y.A., Nagao, C., Sakaguchi, Y., Sakate, R., Masui, T., Mizuguchi, K.: Sagace: A web-based search engine for biomedical databases in japan. BMC research notes 5(1), 604 (2012)CrossRefGoogle Scholar
  11. 11.
    National Center for Biotechnology Information, National Library of Medicine: PubMed. http://www.ncbi.nlm.nih.gov/pubmed/
  12. 12.
    National Library of Medicine: Medical Subject Headings. http://www.nlm.nih.gov/mesh/
  13. 13.
    Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM SIGMOD Record 33(4), 65–70 (2004)CrossRefGoogle Scholar
  14. 14.
    Okumura, T., Tanaka, H., Omura, M., Ito, M., Nakagawa, S., Tateisi, Y.: Cost decisions in the development of disease knowledge base : A case study. In: 2014 International Workshop on Biomedical and Health Informatics, November 2014Google Scholar
  15. 15.
    Rance, B., Snyder, M., Lewis, J., Bodenreider, O.: Leveraging Terminological Resources for Mapping between Rare Disease Information Sources. Studies in health technology and informatics 192, 529 (2013)Google Scholar
  16. 16.
    Tokuda, Y., Aoki, M., Kandpal, S.B., Tierney, L.M.: Caught in the web: E-diagnosis. Clinical Care Conundrums: Challenging Diagnoses in Hospital Medicine, pp. 169–175 (2013)Google Scholar
  17. 17.
    World Health Organization: ICD-10: International statistical classification of diseases and related health problems. World Health Organization (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maori Ito
    • 1
  • Shin’ichi Nakagawa
    • 2
  • Kenji Mizuguchi
    • 1
  • Takashi Okumura
    • 3
  1. 1.National Institute of Biomedical InnovationIbaraki-City, OsakaJapan
  2. 2.Research Institute of Info-Communication MedicineKoganei city, TokyoJapan
  3. 3.National Institute of Public HealthWako-shi, SaitamaJapan

Personalised recommendations