Skip to main content

Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes

  • Chapter
Membrane Hydration

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

A family of polarity sensitive fluorescent probes (2-(dimethylamino)-6-acylnaphtalenes, i.e. LAURDAN, PRODAN, ACDAN) was introduced by Gregorio Weber in 1979, with the aim to monitor solvent relaxation phenomena on protein matrices. In the following years, however, PRODAN and particularly LAURDAN, were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane/water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almaleck H, Gordillo GJ, Disalvo A (2013) Water defects induced by expansion and electrical fields in DMPC and DMPE monolayers: contribution of hydration and confined water. Colloids Surf B Biointerfaces 102:871–878

    Article  CAS  PubMed  Google Scholar 

  • Antollini SS, Barrantes FJ (1998) Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry 37:16653–16662

    Article  CAS  PubMed  Google Scholar 

  • Arnulphi C, Levstein PR, Ramia ME, Martin CA, Fidelio GD (1997) Ganglioside hydration study by 2H-NMR: dependence on temperature and water/lipid ratio. J Lipid Res 38:1412–1420

    CAS  PubMed  Google Scholar 

  • Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541–1556

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA (2013) LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope. In: Mely Y, Duportail G (eds) Fluorescent methods to study biological membranes. Springer, Heidelberg/New York, pp 3–36

    Google Scholar 

  • Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E (2000a) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 79:434–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E (2000b) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E (2001) Direct observation of lipid domains in free-standing bilayers using two-photon excitation fluorescence microscopy. J Fluoresc 11:141–160

    Article  CAS  Google Scholar 

  • Bagatolli LA, Maggio B, Aguilar F, Sotomayor CP, Fidelio GD (1997) Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochim Biophys Acta 1325:80–90

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E, Fidelio GD (1998) Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys J 75:331–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Parasassi T, Fidelio GD, Gratton E (1999) A model for the interaction of 6-lauroyl-2-(N, N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Photochem Photobiol 70:557–564

    Article  CAS  PubMed  Google Scholar 

  • Bernardino De La Serna J, Oradd G, Bagatolli LA, Simonsen AC, Marsh D, Lindblom G, Perez-Gil J (2009) Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys J 97:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Bernardino De La Serna J, Hansen S, Berzina Z, Simonsen AC, Hannibal-Bach HK, Knudsen J, Ejsing CS, Bagatolli LA (2013) Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice. Biochim Biophys Acta 1828:2450–2459

    Article  CAS  PubMed  Google Scholar 

  • Bernchou U, Brewer J, Midtiby HS, Ipsen JH, Bagatolli LA, Simonsen AC (2009) Texture of lipid bilayer domains. J Am Chem Soc 131:14130–14131

    Article  CAS  PubMed  Google Scholar 

  • Bloksgaard M, Bek S, Marcher AB, Neess D, Brewer J, Hannibal-Bach HK, Helledie T, Fenger C, Due M, Berzina Z, Neubert R, Chemnitz J, Finsen B, Clemmensen A, Wilbertz J, Saxtorph H, Knudsen J, Bagatolli L, Mandrup S (2012a) The acyl-CoA binding protein is required for normal epidermal barrier function in mice. J Lipid Res 53:2162–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloksgaard M, Svane-Knudsen V, Sorensen JA, Bagatolli L, Brewer J (2012b) Structural characterization and lipid composition of acquired cholesteatoma: a comparative study with normal skin. Otol Neurotol 33:177–183

    Article  PubMed  Google Scholar 

  • Bloksgaard M, Brewer J, Pashkovski E, Ananthapadmanabhan KP, Ahm Sørensen J, Bagatolli LA (2014) Effect of detergents on the physico-chemical properties of skin stratum corneum: a two-photon excitation fluorescence microscopy study. Int J Cosmet Sci 36(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Brewer J, Bernardino De La Serna J, Wagner K, Bagatolli LA (2010) Multiphoton excitation fluorescence microscopy in planar membrane systems. Biochim Biophys Acta 1798:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Carrer DC, Vermehren C, Bagatolli LA (2008) Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release 132:12–20

    Article  CAS  PubMed  Google Scholar 

  • Celli A, Gratton E (2010) Dynamics of lipid domain formation: fluctuation analysis. Biochim Biophys Acta 1798:1368–1376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong PL (1988) Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry 27:399–404

    Article  CAS  PubMed  Google Scholar 

  • Chong PL-G (1990) Interactions of LAURDAN and PRODAN with membranes at high pressure. High Pressure Res 5:761–763

    Article  Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodes Traian MM, González Flecha FL, Levi V (2012) Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J Lipid Res 53(3):609–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Fidorra M, Duelund L, Leidy C, Simonsen AC, Bagatolli LA (2006) Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophys J 90:4437–4451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fidorra M, Heimburg T, Bagatolli LA (2009) Direct visualization of the lateral structure of porcine brain cerebrosides/POPC mixtures in presence and absence of cholesterol. Biophys J 97:142–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100:15554–15559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golfetto O, Hinde E, Gratton E (2013) Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys J 104:1238–1247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henshaw JB, Olsen CA, Farnbach AR, Nielson KH, Bell JD (1998) Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2. Biochemistry 37:10709–10721

    Article  CAS  PubMed  Google Scholar 

  • Hutterer R, Schneider FW, Sprinz H, Hof M (1996) Binding and relaxation behaviour of prodan and patman in phospholipid vesicles: a fluorescence and 1H NMR study. Biophys Chem 61:151–160

    Article  CAS  PubMed  Google Scholar 

  • Jameson DM, Croney JC, Moens PD (2003) Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol 360:1–43

    Article  CAS  PubMed  Google Scholar 

  • Juhasz J, Davis JH, Sharom FJ (2010) Fluorescent probe partitioning in giant unilamellar vesicles of ‘lipid raft’ mixtures. Biochem J 430:415–423

    Article  CAS  PubMed  Google Scholar 

  • Jurkiewicz P, Sykora J, Olzynska A, Humpolickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 15:883–894

    Article  CAS  PubMed  Google Scholar 

  • Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir 22:8741–8749

    Article  CAS  PubMed  Google Scholar 

  • Jurkiewicz P, Cwiklik L, Jungwirth P, Hof M (2012) Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. Biochimie 94:26–32

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Choo HJ, Jung SY, Ko YG, Park WH, Jeon SJ, Kim CH, Joo T, Cho BR (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8:553–559

    Article  CAS  PubMed  Google Scholar 

  • Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 96:8461–8466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74:1984–1993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasnowska EK, Bagatolli LA, Gratton E, Parasassi T (2001) Surface properties of cholesterol-containing membranes detected by Prodan fluorescence. Biochim Biophys Acta 1511:330–340

    Article  CAS  PubMed  Google Scholar 

  • Kubiak J, Brewer J, Hansen S, Bagatolli LA (2011) Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides. Biophys J 100:978–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakowicz JR, Sheppard JR (1981) Fluorescence spectroscopic studies of Huntington fibroblast membranes. Am J Hum Genet 33:155–165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12:4171–4179

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A (1983) Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes. Biochemistry 22:5714–5722

    Article  CAS  Google Scholar 

  • Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  • Macgregor RB, Weber G (1986) Estimation of the polarity of the protein interior by optical spectroscopy. Nature 319:70–73

    Article  CAS  PubMed  Google Scholar 

  • Montes LR, Alonso A, Goni FM, Bagatolli LA (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93:3548–3554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nag K, Pao JS, Harbottle RR, Possmayer F, Petersen NO, Bagatolli LA (2002) Segregation of saturated chain lipids in pulmonary surfactant films and bilayers. Biophys J 82:2041–2051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen SB, Otzen DE (2010) Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. J Colloid Interface Sci 345:248–256

    Article  CAS  PubMed  Google Scholar 

  • Norlen L, Plasencia I, Bagatolli L (2008) Stratum corneum lipid organization as observed by atomic force, confocal and two-photon excitation fluorescence microscopy. Int J Cosmet Sci 30:391–411

    Article  CAS  PubMed  Google Scholar 

  • Olzynska A, Zan A, Jurkiewicz P, Sykora J, Grobner G, Langner M, Hof M (2007) Molecular interpretation of fluorescence solvent relaxation of Patman and 2H NMR experiments in phosphatidylcholine bilayers. Chem Phys Lipids 147:69–77

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Gratton E (1992) Packing of phospholipid vesicles studied by oxygen quenching of Laurdan fluorescence. J Fluoresc 2:167–174

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by LAURDAN fluorescence. J Fluoresc 5:59–69

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Conti F, Gratton E (1986a) Fluorophores in a polar medium: time dependence of emission spectra detected by multifrequency phase and modulation fluorometry. Cell Mol Biol 32:99–102

    CAS  PubMed  Google Scholar 

  • Parasassi T, Conti F, Gratton E (1986b) Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32:103–108

    CAS  PubMed  Google Scholar 

  • Parasassi T, De Stasio G, D’ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parasassi T, Loiero M, Raimondi M, Ravagnan G, Gratton E (1993a) Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Biochim Biophys Acta 1153:143–154

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Ravagnan G, Rusch RM, Gratton E (1993b) Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence. Photochem Photobiol 57:403–410

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994a) Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Biophys J 66:763–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994b) Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Biophys J 66:120–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parasassi T, Giusti AM, Raimondi M, Gratton E (1995) Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations. Biophys J 68:1895–1902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parasassi T, Krasnowska EK, Bagatolli LA, Gratton E (1998) LAURDAN and Prodan as polarity sensitive fluorescent membrane probes. J Fluoresc 8:365–373

    Article  CAS  Google Scholar 

  • Plasencia I, Norlen L, Bagatolli LA (2007) Direct visualization of lipid domains in human skin stratum corneum’s lipid membranes: effect of pH and temperature. Biophys J 93:3142–3155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez SA, Bagatolli LA, Gratton E, Hazlett TL (2002) A two-photon view of an enzyme at work: crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophys J 82:2232–2243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci U S A 109:7314–7319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sot J, Bagatolli LA, Goni FM, Alonso A (2006) Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90:903–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stock RP, Brewer J, Wagner K, Ramos-Cerrillo B, Duelund L, Jernshoj KD, Olsen LF, Bagatolli LA (2012) Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate. PLoS One 7:e36003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sumbilla C, Lakowicz JR (1982) Fluorescence studies of red blood cell membranes from individuals with Huntington’s disease. J Neurochem 38:1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lo W, Lin SJ, Jee SH, Dong CY (2004) Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin. Opt Lett 29:2013–2015

    Article  CAS  PubMed  Google Scholar 

  • Vanounou S, Pines D, Pines E, Parola AH, Fishov I (2002) Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 76:1–11

    Article  CAS  PubMed  Google Scholar 

  • Viard M, Gallay J, Vincent M, Meyer O, Robert B, Paternostre M (1997) Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Biophys J 73:2221–2234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vincent M, De Foresta B, Gallay J (2005) Nanosecond dynamics of a mimicked membrane-water interface observed by time-resolved stokes shift of LAURDAN. Biophys J 88:4337–4350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18:3075–3078

    Article  CAS  PubMed  Google Scholar 

  • Yu W, So PT, French T, Gratton E (1996) Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys J 70:626–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng J, Chong PL (1995) Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan. Biophys J 68:567–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by a grant from the Danish Research Council (12-124751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Bagatolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bagatolli, L.A. (2015). Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_5

Download citation

Publish with us

Policies and ethics