Skip to main content

Membrane Hydration: A Hint to a New Model for Biomembranes

  • Chapter
Membrane Hydration

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

The classical view of a biological membrane is based on the Singer-Nicholson mosaic fluid model in which the lipid bilayer is the structural backbone. Under this paradigm, many studies of biological processes such as, permeability, active transport, enzyme activity and adhesion and fusion processes have been rationalized considering the lipid membrane as a low dielectric slab of hydrocarbon chains with polar head groups exposed to water at each side in which oil/water partition prevails. In spite of several analyses and evidence available in relation to membrane hydration, water is not taken into account as a functional component. For this purpose, new insights in the water organization in restricted environments and the thermodynamical and mechanical properties emerging from them are specifically analysed and correlated.

This chapter summarizes the progress of the studies of water in membranes along the book in order to give a more realistic structural and dynamical picture accounting for the membrane functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Awqati Q (1999) One hundred years of membrane permeability: does Overton still rule? Nat Cell Biol 1(8):E201–E202

    Article  CAS  PubMed  Google Scholar 

  • Almaleck H, Gordillo GJ, Disalvo A (2013) Water defects induced by expansion and electrical fields in DMPC and DMPE monolayers: contribution of hydration and confined water. Colloids Surf B Biointerfaces 102:871–878

    Article  CAS  PubMed  Google Scholar 

  • Antollini SS, Barrantes FJ (1998) Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry 37:16653–16662

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 49(4):378–389

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shaul A (1995) Molecular theory of chain packing, elasticity and lipid-protein interaction in lipid bilayers. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics. Elsevier Science, North-Holland

    Google Scholar 

  • Berkowitz ML, Vácha R (2012) Aqueous solutions at the interface with phospholipid bilayers. Acc Chem Res 45:74–82

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz ML, Bostick DL, Pandit S (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Bhide SY, Berkowitz ML (2005) Structure and dynamics of water at the interface with phospholipid bilayers. J Chem Phys 123:224702

    Article  PubMed  Google Scholar 

  • Chaplin MF (1999) A proposal for structuring of water. Biophys Chem 83:211–221

    Article  Google Scholar 

  • Chapman D, Urbina J, Keough K (1974) Studies of lipid-water systems using differential scanning calorimetry. J Biol Chem 249(8):2512–2521

    CAS  PubMed  Google Scholar 

  • Chapmann D (1971) Liquid crystalline properties of phospholipids and biological membranes. Symp Faraday Soc 5:163–174

    Article  Google Scholar 

  • de Gier J (1989) Chapter 4: Osmotic properties of liposomes. In: Benga G (ed) Water transport in biological membranes, vol I. CRC Press, Boca Raton

    Google Scholar 

  • de Gier J, Mandersloot JG, Hupkes JV, McElhaney RNM, Van Beek NP (1971). On the mechanism of non electrolyte permeation through lipid bilayers and through biomembranes. Biochim Biophys Acta 223:610–618

    Article  Google Scholar 

  • Deamer DW, Volkov AG (1995) Chapter 8: Proton permeability of lipid bilayers. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton, pp 161–178

    Google Scholar 

  • Debnath A, Mukherjee B, Ayappa KG et al (2010) Entropy and dynamics of water in hydration layers of a bilayer. J Chem Phys 133:174704

    Article  PubMed  Google Scholar 

  • Disalvo EA (1986) Permeation of water and polar solutes in lipid bilayers. Adv Colloid Interf Sci 29:141–170

    Article  Google Scholar 

  • Disalvo EA, De Gier J (1983) Contribution of aqueous interphases to the permeability barrier of lipid bilayer for non-electrolytes. Chem Phys Lipids 32:39–47

    Article  CAS  Google Scholar 

  • Disalvo EA, Frías MA (2013) Water state and carbonyl distribution populations in confined regions of lipid bilayers observed by FTIR spectroscopy. Langmuir 29(23):6969–6974

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Lairion F, Martini F, Tymczyszyn E, Frías M, Almaleck H, Gordillo GJ (2008) Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta 1778:2655–2670

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Bouchet AM, Frias MA (2013) Connected and isolated CH populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by FTIR spectrometry. Biochim Biophys Acta 1828:1683–1689

    Article  CAS  PubMed  Google Scholar 

  • Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton, pp 67–91

    Google Scholar 

  • Flory PJ (1969) Statistical mechanics of chain molecules. Interscience, New York

    Google Scholar 

  • Ge MT, Freed JH (2003) Hydration, structure, and molecular interactions in the headgroup region of dioleoylphosphatidylcholine bilayers: an electron spin resonance study. Biophys J 85:4023–4040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goñi FM (2014) The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim Biophys Acta 1838(6):1467–1476

    Article  PubMed  Google Scholar 

  • Goñi FM, Arrondo JLR (1986) A study of phospholipid 410 phosphate groups in model membranes by Fourier transform infrared 411 spectroscopy. Faraday Discuss Chem Soc 81:117–126

    Article  PubMed  Google Scholar 

  • Gordeliy VI (1996) Possibility of direct experimental check up of the theory of repulsion forces between amphiphilic surfaces via neutron and X-ray diffraction. Langmuir 12:3498–3502

    Article  CAS  Google Scholar 

  • Gordeliy VI, Cherezov VG, Teixeira J (1996) Evidence of entropic contribution to “hydration” forces between membranes Part II. Temperature dependence of the “hydration” force: a small angle neutron scattering study. J Mol Struct 383:117–124

    Article  CAS  Google Scholar 

  • Griffith OH, Dehlinger PJ, Van SP (1974) Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membr Biol 15:159–192

    Article  CAS  PubMed  Google Scholar 

  • Haines T, Liebovitch LS (1995) Chapter 6: A molecular mechanism for the transport of water across phospholipid bilayers. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton, pp 137–160

    Google Scholar 

  • Heimburg T (2010) Lipid ion channels (review). Biophys Chem 150(1–3):2–22

    Article  CAS  PubMed  Google Scholar 

  • Herrera FE, Bouchet A, Lairion F, Disalvo EA, Pantano S (2012) Molecular dynamics study of the interaction of arginine with phosphatidylcholine and phosphatidylethanolamine bilayers. J Phys Chem B 116:4476–4483

    Article  CAS  PubMed  Google Scholar 

  • Ipsen JH, Mouritsen OG, Bloom M (1990) Relationships between lipid membrane area, hydrophobic thickness, and acyl- chain orientational order. Biophys J 57:405–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Israelachvili JN (1977) Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta 469:221–225

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili J, Wennerström H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379(6562):219–225

    Article  CAS  PubMed  Google Scholar 

  • Jendrasiak GL, Hasty JH (1974) The hydration of phospholipids. Biochim Biophys Acta 337(1):79–91

    Article  CAS  PubMed  Google Scholar 

  • Jendrasiak GL, Smith RL, Shaw W (1996) The water adsorption characteristics of charged phospholipids. Biochim Biophys Acta 1279:63–69

    Article  PubMed  Google Scholar 

  • Kedem O, Katchalsky A (1958) A thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  • Kiselev M, Lesieur P, Kisselev A et al (1999) DMSO-induced dehydration of DPPC membranes studied by X-ray diffraction, small-angle neutron scattering, and calorimetry. J Alloys Compd 286:195–202

    Article  CAS  Google Scholar 

  • Kodama M, Kato H, Aoki H (2001) Comparison of differently bound molecules in the gel and subgel phases of a phospholipid bilayer system. J Therm Anal Calorim 64:219–230

    Article  CAS  Google Scholar 

  • Kuntz ID, Kauzmann W (1974) Hydration of proteins and polypeptides. Adv Protein Chem 28:239–345

    Article  CAS  PubMed  Google Scholar 

  • Luzardo MC, Amalfa F, Nuñez AM, Díaz S, Biondi De Lopez AC, Disalvo EA (2000) Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J 78(5):2452–2458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacCallum L, Bennett WF, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malaspina DC, Rodriguez Fris JA, Appignanesi GA, Sciortino F (2009) Identifying a causal link between structure and dynamics in supercooled water. Europhys Lett 88:16003

    Article  Google Scholar 

  • Mathai JC, Tristram-Nagle S, Nagle JF (2008) Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131(1):69–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McElhaney RN, de Gier J, van der Neut-Kok ECM (1973) The effect of alterations in fatty acid composition and cholesterol content on the nonelectrolyte permeability of Acholeplasma laidlawii B cells and derived liposomes. Biochim Biophys Acta 298:500–512

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Simon SA, Dilger JP et al (1989) Chapter 1: Location of water-hydrocarbon interface in lipid bilayers. In: Benga G (ed) Water transport in biological membranes, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Murzyn K, Zhao W, Karttunen M et al (2006) Dynamics of water at membrane surfaces: effect of headgroup structure. Biointerphases 1:98–105

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469(3):159–195

    Article  CAS  Google Scholar 

  • Overton E (1889) Über die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Vierteljahrsschr Natur-forsch Ges Zürich 44:88–135

    Google Scholar 

  • Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by LAURDAN fluorescence. J Fluoresc 5:59–69

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinnick ER, Erramilli S, Wang F (2010) Computational investigation of lipid hydration water of L α 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine at three hydration levels. Mol Phys 108:2027–2036

    Article  CAS  Google Scholar 

  • Preston Moon C, Fleming KG (2011) Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc Natl Acad Sci U S A 108(25):10174–10177

    Article  PubMed Central  PubMed  Google Scholar 

  • Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. Methods Enzymol 127:511–521

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–723

    Article  CAS  PubMed  Google Scholar 

  • Sovago M, Vartiainen E, Bonn M (2009) Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy. J Chem Phys 131:161107–161111

    Article  PubMed  Google Scholar 

  • Sparr E, Wennerström H (2001) Responding phospholipid membranes—interplay between hydration and permeability. Biophys J 81(2):1014–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ti Tien H, Ottova AL (2001) The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes. J Membr Sci 189:83–117

    Article  Google Scholar 

  • Träuble H (1971) The movement of molecules across lipid membranes: a molecular theory. J Membr Biol 4(1):193–208

    Article  PubMed  Google Scholar 

  • Van Zoelen EJJ, Blok MC, De Gier J (1976) An improved method for the description of non-electrolyte permeation through liposomes, based on irreversible thermodynamics. Biochim Biophys Acta Biomembr 436(2):301–306

    Article  Google Scholar 

  • Viera LI, Alonso-Romanowski S, Borovyagin V, Feliz MR, Disalvo EA (1993) Properties of gel phase lipid-trehalose bilayers upon rehydration. Biochim Biophys Acta 1145(1):157–167

    Article  CAS  PubMed  Google Scholar 

  • Villarreal MA, Díaz SB, Disalvo EA, Montich GG (2004) Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. Langmuir 20:7844–7851

    Article  CAS  PubMed  Google Scholar 

  • White SH (1976) The lipid bilayer as a “solvent” for small hydrophobic molecules. Nature 262:421–422

    Article  CAS  PubMed  Google Scholar 

  • Wimley C, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  PubMed  Google Scholar 

  • Yeagle PL (2004) The structure of biological membranes, 2nd edn. CRC Press, Boca Raton (FL).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Anibal Disalvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Disalvo, E.A. (2015). Membrane Hydration: A Hint to a New Model for Biomembranes. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_1

Download citation

Publish with us

Policies and ethics