Reconstruction of Prehistoric Settlement Network Using Agent-Based Model in NetLogo

  • Kamila Olševičová
  • Jan Procházka
  • Alžběta Danielisová
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 524)


We provide an overview of agent-based and network-based computational models in archaeology. Then we suggest a sample model of gradual spatial dispersion of late Iron Age settlement network regarding the probable existence of central sites and settlement hierarchies. The model is based on archaeological research hypotheses and fragmented archaeological evidence of sites in Central Europe. The aim of the model is to enable experimenting with relevant combinations of parameters and triggers and to provide the dynamic picture of the emergence of the prehistoric settlement network.


Agent-based model Archaeology Emergence Netlogo Network 



This work was supported by the Czech Science Foundation under Grant P405/12/0926 “Social modelling as a tool for understanding Celtic society and cultural changes at the end of the Iron Age" and UHK FIM specific research project 7/2015.


  1. Altaweel, M.: Addressing the structures and dynamics of modeled human ecologies. In: Jeffrey, T.C., Emily, M.H. (eds.) Digital Discovery Exploring New Frontiers in Human Heritage, pp. 30–41. Computer Applications and Quantitative Methods in Archaeology, Budapest (2007)Google Scholar
  2. Altaweel, M.: Investigating agricultural sustainability and strategies in northern Mesopotamia: results produced using a socio-ecological modeling approach. J. Archaeol. Sci. 35, 821–835 (2008)CrossRefGoogle Scholar
  3. Angourakis, A., Rondelli, B., Stride, S., et al.: Land use patterns in central Asia. Step 1: the musical chairs model. J. Archaeol. Method Theory 21, 405–425 (2014)CrossRefGoogle Scholar
  4. Axtell, R.L., et al.: Population growth and collapse in a multi-agent model of the kayenta anasazi in long house valley. Proc. Nat. Acad. Sci. 99(3), 7275–7279 (2002)CrossRefMathSciNetGoogle Scholar
  5. Bandy, M.S.: Fissioning, scalar stress, and social evolution in early village societies. Am. Anthropol. 106(2), 322–333 (2004)CrossRefGoogle Scholar
  6. Barton, C.M., Ullah, I.I., Mitasova, H.: Computational modeling and Neolithic socioecological dynamics: a case study from Southwest Asia. Am. Antiq. 75, 364–386 (2010)CrossRefGoogle Scholar
  7. Barton, C.M.: Complexity, social complexity, and modeling. J. Archaeol. Method Theory 21(2), 306–324 (2014)CrossRefMathSciNetGoogle Scholar
  8. Bentley, R.A., Lake, M.W., Shennan, S.J.: Specialization and wealth inequality in a model of a clustered economic network. J. Archaeol. Sci. 32, 1346–1356 (2005)CrossRefGoogle Scholar
  9. Conolly, J., Colledge, S., Shennan, S.: Founder effect, drift, and adaptive change in domestic crop use in early Neolithic Europe. J. Archaeol. Sci. 35, 2797–2804 (2008)CrossRefGoogle Scholar
  10. Crema, E.R.: A simulation model of fission-fusion dynamics and long-term settlement change. J. Archaeol. Method Theory 21, 385–404 (2014)CrossRefGoogle Scholar
  11. Danielisová, A., Olševičová, K., Cimler, R., Machálek, T.: Understanding the iron age economy: sustainability of agricultural practices under stable population growth. In: Wurzer, G., Kowarik, K., Reschreiter, H. (eds.) Agent-based Modeling and Simulation in Archaeology. Advances in Geographic Information Science, pp. 205–241. Springer, Wien (2013)Google Scholar
  12. Del Castillo, F., Barceló, J.A.: Why hunter and gatherers did not die more often? Simulating prehistoric decision making. In: Earl, G., Sly, T., Chrysanthi, A., Murrieta-Flores, P., Papadopoulos, C., Romanowska, I., Wheatley, D. (eds.) Archaeology in the Digital Era, pp. 154–163. Computer Applications and Quantitative Methods in Archaeology, Southampton (2013)Google Scholar
  13. Grant, E. (ed.): Central Places Archaeology and History. University of Sheffield, Sheffield (1986)Google Scholar
  14. Janssen, M.A.: Understanding Artificial Anasazi. J. Artif. Soc. Soc. Simul. 12(4), 13 (2009)Google Scholar
  15. Knappett, C. (ed.): Network Analysis in Archaeology: New Approaches to Regional Interaction. Oxford University Press, Oxford (2013)Google Scholar
  16. Kohler, T.A., Varien, M.D. (eds.): Emergence and Collapse of Early Villages Models of Central Mesa Verde Archaeology. University of California Press, Los Angeles (2012)Google Scholar
  17. Lake, M.W.: Trends in archaeological simulation. J. Archaeol. Method Theory 21, 258–287 (2014)CrossRefGoogle Scholar
  18. Lake, M.: Computer Simulation of mesolithic foraging? In: Gumerman, G.J., Kohler, T.A. (eds.) Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes, pp. 107–143. Oxford University Press, New York (2000)Google Scholar
  19. Lake, M.W.: The uncertain future of simulating the past. In: Costopoulos, A., Lake, M.W. (eds.) Simulating the Change Archaeology into the Twenty-First Century, pp. 12–20. University of Utah Press, Salt Lake City (2010)Google Scholar
  20. Lake, M.W., Crema, E.R.: The cultural evolution of adaptive-trait diversity when resources are uncertain and finite. Adv. Complex Syst. 19, 1150013 (2012)CrossRefGoogle Scholar
  21. Madella, M., Rondelli, B., Lancelotti, C., et al.: Introduction to simulating the past. Archaeol. Method Theory 21, 251–257 (2014)CrossRefGoogle Scholar
  22. Machálek, T., Cimler, R., Olševičová, K., Danielisová, A.: Fuzzy methods in land use modeling for archaeology. Math. Methods Econ. 2, 536–542 (2013)Google Scholar
  23. Meijers, E.: From central place to network model: Theory and evidence of a paradigm change. Tijdschrift voor Economische en Soc. Geogr. 98, 245–259 (2007)CrossRefGoogle Scholar
  24. Militký, J.: Nejstarší středoevropské mince – vzestup a pád keltské civilizace ve střední Evropě z pohledu numismatiky. Kolaps a regenerace: cesty civilizací a kultur. Minulost, současnost a budoucnost komplexních společností, Praha, pp. 139–172 (2011)Google Scholar
  25. Nakoinz, O.: Concepts of central place research in archaeology. landscapes and human development: the contribution of european archaeology. In: Proceedings of the International Workshop “Socio-Environmental Dynamics over the Last 12 000 Years: The Creation of Landscapes” Kiel, pp. 251–264 (2010)Google Scholar
  26. Nakoinz, O.: Models of centrality. J. Ancient Stud. Spec. 3, 217–223 (2012)Google Scholar
  27. Olševičová, K., Cimler, R., Machálek, T.: Agent-based model of celtic population growth: NetLogo and python. In: Nguyen NT, A., Trawiński B, B., katarzyniak, R., Jo, G.-S. (eds.) Advanced Methods for Computational Collective Intelligence, Studies in Computational Intelligence, pp. 135–143. Springer, Berlin (2012)Google Scholar
  28. Östeborn, P., Gerding, H.: Network analysis of archaeological data: a systematic approach. J. Archaeol. Sci. 46, 75–88 (2014)CrossRefGoogle Scholar
  29. Powel, A.S., Shennan, S.J., Thomas, M.G.: Late pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009)CrossRefGoogle Scholar
  30. Premo, L.: Exploring behavioral terra incognita with archaeological agent-based models. Beyond Illustration: 2D and 3D Technologies as Tools of Discovery in Archaeology. BAR International Series 1805, 46–56 (2008)Google Scholar
  31. Premo, L.: Equifinality and explanation: the role of agent-based modeling in postpositivist archaeology. In: Costopoulos, A., Lake, M.W. (eds.) Simulating the Change Archaeology into the Twenty-First Century, pp. 28–37. University of Utah Press, Salt Lake City (2010)Google Scholar
  32. Salgado, M., Noguera, J.A., Miguel, F.: Modelling cooperation mechanisms: some conceptual issues. J. Archaeol. Method Theory 21, 325–342 (2014)CrossRefGoogle Scholar
  33. Shennan, S.: The spread of farming into central europe ind its consequences: evolutionary models. In: Kohler, T.A., van der Leeuw, S.E. (eds.) The Model-Based Archaeology of Socionatural Systems, pp. 141–156. Santa Fe, New Mexico (2007)Google Scholar
  34. Thér, R., Mangel, R.: Inovace a specializace v hrnčířském řemesle v době laténské: model vývoje forem organizace výroby. Archeologické Rozhledy LXVI, pp. 3–39 (2014)Google Scholar
  35. van der Vaart, E., de Boer, B., Hankel, A., Verheij, B.: Agents Adopting Agriculture:Modeling the Agricultural Transition. In: Nolfi, Stefano, Baldassarre, Gianluca, Calabretta, Raffaele, Hallam, John C.T., Marocco, Davide, Meyer, Jean-Arcady, Miglino, Orazio, Parisi, Domenico (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 750–761. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  36. Wainwright, J.: Can modelling enable us to understand the rôle of humans in landscape evolution? Geoforum 39, 659–674 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kamila Olševičová
    • 1
  • Jan Procházka
    • 1
  • Alžběta Danielisová
    • 2
  1. 1.University of Hradec KrálovéHradec KrálovéCzech Republic
  2. 2.Institute of Archaeology of Academy of Sciences of the Czech RepublicPrague 1Czech Republic

Personalised recommendations